scholarly journals Dipyridamole potentiates KDRF-mediated inhibition of platelet aggregation: The role of dipyridamole in vivo as a cGMP phosphodiesterase inhibitor

1989 ◽  
Vol 49 ◽  
pp. 148
Author(s):  
Ichiro Sakuma ◽  
Yasuhiro Akaishi ◽  
Mitsuhiro Fukao ◽  
Hisakazu Yasuda ◽  
Kazuhiki Matsuno ◽  
...  
1992 ◽  
Vol 68 (01) ◽  
pp. 069-073 ◽  
Author(s):  
J J J van Giezen ◽  
J W C M Jansen

SummaryDexamethasone decreases the fibrinolytic activity in cultured medium of several cell types by an induction of PAI-1 synthesis. As a result of this enhanced PAI-1 synthesis a prothrombotic state is expected in patients treated with dexamethasone. However, such a prothrombotic state is not reported as a major adverse effect. We have studied the effects of dexamethasone (dose range: 0.1–3.0 mg/kg) on the fibrinolytic system of rats after a 5 day pretreatment period. It appeared that dexamethasone dose dependently decreased the fibrinolytic activity (a dose of 1 mg/kg showed a reduction of about 40%). This reduced fibrinolytic activity could be functionally translated into an increased thrombus size as measured with a venous thrombosis model: thrombus size was increased by 50% with 1 mg/kg dexamethasone. No effects could be measured on the coagulation system, but it appeared that ex-vivo measured platelet aggregation was dose dependently inhibited by dexamethasone treatment. This effect resulted in-vivo in prolonged obstruction times as measured with a modified aorta-loop model. These results indicate that the expected prothrombotic state due to a diminished fibrinolytic activity caused by dexamethasone is counterbalanced by an inhibition of platelet aggregation.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


Circulation ◽  
1993 ◽  
Vol 88 (3) ◽  
pp. 1205-1214 ◽  
Author(s):  
P Golino ◽  
G Ambrosio ◽  
M Ragni ◽  
I Pascucci ◽  
M Triggiani ◽  
...  

Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 112-112
Author(s):  
Aleksandra Stojanovic ◽  
Matvey Gorovoy ◽  
Tatyana Voyno-Yasenetskaya ◽  
Xiaoping Du

Abstract LIM Kinase (LIMK)-1 is a member of the LIMK family of serine-threonine protein kinases that phosphorylates actin-binding protein cofilin and regulates actin cytoskeleton organization. LIMK1 is expressed in many cell types including platelets but the exact role of LIMK1 in platelet function remains unclear. To determine the role of LIMK1 in platelet activation, wild type or LIMK1 knockout mouse platelets were stimulated with platelet agonists. Platelet aggregation and granule secretion were analyzed. Integrin-dependent second wave of platelet aggregation induced by von Willebrand factor (VWF) in the presence of VWF activator botrocetin was abolished in LIMK1 knockout platelets. In contrast, platelet aggregation in response to the agonist peptide of protease-activated receptor-4 (PAR4, thrombin receptor), ADP and collagen was either not affected or enhanced in LIMK1 knockout platelets in comparison with wild type mouse platelets. Thus, LIMK appears to play an important role in platelet activation stimulated by VWF binding to its platelet receptor, glycoprotein Ib-IX complex (GPIb-IX) but had no stimulatory effect on or negatively regulate the GPIb-IX-independent platelet activation pathways mediated by PAR-4, ADP receptors and collagen receptors. To determine whether ligand binding to GPIb-IX stimulates LIMK activation and function, platelets were stimulated with VWF in the presence of either ristocetin or botrocetin, and immunoblotted with antibodies specifically recognizing phosphorylated LIMK1 (Serine 505) or cofilin (Serine 3). VWF induced phosphorylation of LIMK1 and LIMK substrate cofilin. Thus, VWF indeed stimulates LIMK1 activation and function. An important physiological role of GPIb-IX in platelets is to mediate platelet adhesion to subendothelial-bound VWF under shear stress at sites of vascular injury. To determine whether LIMK1 is important in platelet adhesion, we investigated whether LIMK1 knockout affected platelet adhesion to VWF-coated surfaces. LIMK1 knockout platelets are defective in mediating stable platelet adhesion to vWF under shear stress, suggesting that LIMK1 plays an important role in GPIb signaling and GPIb-IX-mediated integrin activation that is required for stable platelet adhesion under shear stress. Importantly, LIMK1 knockout mice showed significant delay in the formation of occlusive thrombus following FeCl3-induced carotid artery injury in comparison with wild type mice, indicating that the role of LIMK1 in GPIb-IX-mediated platelet activation is important in in vivo thrombosis. Together, our study reveals that LIMK1 plays an important role in GPIb-IX-mediated platelet activation and arterial thrombosis in vitro and in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2296-2296
Author(s):  
Gilbert Acevedo ◽  
Brian R. Branchford ◽  
Christine Brzezinski ◽  
Susan Sather ◽  
Gary Brodsky ◽  
...  

Abstract Background Growth Arrest Specific gene 6 (Gas6) is a ligand for the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases found on the surface of platelets. Previous studies have shown that stimulation of these receptors results in amplification of platelet activation and thrombus stabilization via activation of phosphatidylinositol-3-kinase (PI3K) and Akt, leading to phosphorylation of the β3 integrin. Previous work (from our lab and others) demonstrated that inhibition of the Gas6/TAM pathway results in impaired platelet aggregation, reduced aggregate stability, and decreased platelet spreading. Additionally, knockout mice deficient in the receptor or ligand are protected from venous and arterial thrombosis, but retain normal tail bleeding times. Here, we describe development and characterization of novel Mer-selective small molecule inhibitors (SMIs) for thrombosis applications. Objectives To determine if Mer-selective SMIs can inhibit platelet aggregation and protect mice from thrombosis using in vitro and in vivo models Methods We used aggregometry and in vivo murine models of arterial and venous thrombosis to compare two Mer-selective SMIs (UNC Mer TKI1 and UNC Mer TKI2) and determine the most effective inhibitor of platelet aggregation and thrombus formation. The inhibitory effect of two doses (1µM and 5 µM) of the compounds were determined using standard light-transmission aggregometry after a 30 minute incubation with washed human platelets at 37 ¢ªC and compared to platelets treated with vehicle control or with a TKI control (UNC TKI Null), a SMI with similar structure but minimal anti-TAM activity. Both collagen/epinephrine-induced systemic venous thrombosis and FeCl3-induced carotid artery injury models were used to determine effects on thrombosis mediated by UNC TKIs. Wild type C57Bl/6 mice were treated with one of the two inhibitors and compared to mice treated with vehicle control. Mean values +/- SEM are shown and statistical significance (p<0.05) was determined using the student’s paired t-test. Results UNC Mer TKI1 exhibited more potent inhibition of platelet aggregation in vitro relative to UNC Mer TKI2, although both compounds mediated dose-dependent effects. At a concentration of 1uM, the maximum percent aggregation in UNC Mer TKI1-treated samples (n=7) was significantly greater than samples treated with UNC TKI Null (n=7), 20% DMSO vehicle (n=7), or UNC TKI2 (n=7), with mean values of 69 +/- 2.2%, 76.7 +/-1.8% (p<0.01), 76.9 +/- 2.1% (p=0.001), and 77 +/- 1.8% (p<0.001), respectively. At a concentration of 5 µM, UNC Mer TKI1-treated samples (n=7) exhibited a mean maximum percent aggregation of 23.7 +/- 2.4% compared to 50.4 +/- 4.8% for samples treated with UNC Mer TKI2 (n=7, p<0.001). UNC Mer TKIs also mediated protection from thrombus formation in mice. Following FeCl3 injury to the carotid artery, vehicle-treated mice (n=11) developed stable vessel occlusions with a mean time of 6.77 +/- 0.25 min. In contrast, stable occlusion occurred at a mean time of 46.6 +/- 7.72 min (n=9, p=0.001) for UNC Mer TKI1-treated mice. Survival times following venous injection of collagen and epinephrine were also significantly increased in mice treated with either UNC Mer TKI relative to the UNC TKI Null or vehicle controls. Mice pre-treated with UNC Mer TKI1 (n=9, p=0.04 compared to vehicle alone) or UNC Mer TKI2 (n=9, p=0.03 compared to vehicle alone) survived for 19.84 +/- 4.4 and 21.25 +/- 4.65 minutes, respectively. In contrast, mice given UNC TKI Null (n=3) or vehicle (n=21), only survived for 3.21 +/- 2.4 min and 3.09 +/- 0.22 minutes, respectively. Conclusion UNC Mer TKIs mediate dose-dependent inhibition of platelet aggregation and protect mice from arterial and venous thrombosis. Their pronounced activity compared to an inactive scaffold protein with minimal anti-TAM activity suggest that Gas6/TAM pathway inhibition is the mechanism of action for these novel compounds. UNC Mer TKI1 has more potent anti-thrombotic properties than UNC Mer TKI2. Disclosures: Branchford: University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Sather:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. DeRyckere:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Zhang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Liu:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Earp:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Wang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Frye:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Graham:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Di Paola:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3183-3191 ◽  
Author(s):  
Catherine Léon ◽  
Anita Eckly ◽  
Béatrice Hechler ◽  
Boris Aleil ◽  
Monique Freund ◽  
...  

Abstract Mutations in the MYH9 gene encoding the nonmuscle myosin heavy chain IIA result in bleeding disorders characterized by a macrothrombocytopenia. To understand the role of myosin in normal platelet functions and in pathology, we generated mice with disruption of MYH9 in megakaryocytes. MYH9Δ mice displayed macrothrombocytopenia with a strong increase in bleeding time and absence of clot retraction. However, platelet aggregation and secretion in response to any agonist were near normal despite absence of initial platelet contraction. By contrast, integrin outside-in signaling was impaired, as observed by a decrease in integrin β3 phosphorylation and PtdIns(3,4)P2 accumulation following stimulation. Upon adhesion on a fibrinogen-coated surface, MYH9Δ platelets were still able to extend lamellipodia but without stress fiber–like formation. As a consequence, thrombus growth and organization, investigated under flow by perfusing whole blood over collagen, were strongly impaired. Thrombus stability was also decreased in vivo in a model of FeCl3-induced injury of carotid arteries. Overall, these results demonstrate that while myosin seems dispensable for aggregation and secretion in suspension, it plays a key role in platelet contractile phenomena and outside-in signaling. These roles of myosin in platelet functions, in addition to thrombocytopenia, account for the strong hemostatic defects observed in MYH9Δ mice.


Sign in / Sign up

Export Citation Format

Share Document