scholarly journals Early prediction of decompensation (EPOD) Score – non‐invasive determination of liver cirrhosis decompensation risk

2022 ◽  
Author(s):  
Annika R. P. Schneider ◽  
Carolin V. Schneider ◽  
Kai Markus Schneider ◽  
Vanessa Baier ◽  
Steffen Schaper ◽  
...  
Author(s):  
Magsumova O.A. ◽  
Postnikov M.A. ◽  
Ryskina E.A. ◽  
Tkach T.M. ◽  
Polkanova V.A.

One of the non-invasive methods for treating discoloration of hard tooth tissues is teeth whitening. The aim of this work is to assess the dynamics of changes in the acid resistance of enamel and hard tissues of teeth and the rate of its remineralization after the procedure of office teeth whitening. The study involved 123 patients aged 18 to 35 years with discoloration of various origins, with the color of hard tooth tissues on the Vita Classic A2 scale and darker. Before performing the office, teeth whitening procedure, all patients gave their written voluntary informed consent to participate in this study, as well as consent to the processing of personal data. Depending on the chosen method of office teeth whitening, patients were divided into 3 groups. The resistance of hard tooth tissues was judged based on the determination of TOER and CASRE tests. These indicators were determined at various times (5 days before the office teeth whitening procedure, 5 days after it, after 14, 30 days and 6 months). Regardless of the chosen whitening system, the office teeth whitening procedure is accompanied by a decrease in the enamel's resistance to acids and a decrease in the rate of its remineralization. The remineralizing function of oral fluid promotes the positive dynamics of the studied parameters after 14 days and after 30 days values increased due to the appointment of remineralizing therapy to all patients in 2 weeks after the teeth whitening procedure. After 6 months, all patients had high enamel resistance and the rate of its remineralization.


2020 ◽  
Vol 16 (6) ◽  
pp. 722-737
Author(s):  
Cigdem Yengin ◽  
Emrah Kilinc ◽  
Fatma Gulay Der ◽  
Mehmet Can Sezgin ◽  
Ilayda Alcin

Background: Reverse İontophoresis (RI) is one of the promising non-invasive technologies. It relies on the transition of low magnitude current through the skin and thus glucose measurement becomes possible as it is extracted from the surface during this porter current flow. Objective: This paper deals with the development and optimization of an RI determination method for glucose. CE dialysis membrane based artificial skin model was developed and the dependence of RI extraction on various experimental parameters was investigated. Method: Dependence of RI extraction performance on noble electrodes (platinum, silver, palladium, ruthenium, rhodium) was checked with CA, CV and DPV, in a wide pH and ionic strength range. Optimizations on inter-electrode distance, potential type and magnitude, extraction time, gel type, membrane MWCO, usage frequency, pretreatment, artificial body fluids were performed. Results: According to the optimized results, the inter-electrode distance was 7.0 mm and silver was the optimum noble metal. Optimum pH and ionic strength were achieved with 0.05M PBS at pH 7.4. Higher glucose yields were obtained with DPV, while CA and CV achieved almost the same levels. During CA, +0.5V achieved the highest glucose yield and higher potential even caused a decrease. Glucose levels could be monitored for 24 hours. CMC gel was the optimum collection media. Pretreated CE membrane with 12kD MWCO was the artificial skin model. Pretreatment affected the yields while its condition caused no significant difference. Except PBS solution (simulated as artificial plasma), among the various artificial simulated body fluids, intestinal juice formulation (AI) and urine formulation U2 were the optimum extraction media, respectively. Conclusion: In this study, various experimental parameters (pretereatment procedure, type and MWCO values of membranes, inter-electrode distance, electrode material, extraction medium solvents, ionic strength and pH, collection medium gel type, extraction potential type and magnitude, extraction time and etc) were optimized for the non-invasive RI determination of glucose in a CE dialysis membrane-based artificial skin model and various simulated artificial body fluids.


2016 ◽  
Vol 217 ◽  
pp. 100-108 ◽  
Author(s):  
J.F. Buyel ◽  
H.M. Gruchow ◽  
N. Tödter ◽  
M. Wehner

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Aleksey V. Tarasov ◽  
Ekaterina I. Khamzina ◽  
Maria A. Bukharinova ◽  
Natalia Yu. Stozhko

In contemporary bioanalysis, monitoring the antioxidant activity (AOA) of the human skin is used to assess stresses, nutrition, cosmetics, and certain skin diseases. Non-invasive methods for skin AOA monitoring have certain advantages over invasive methods, namely cost-effectiveness, lower labor intensity, reduced risk of infection, and obtaining results in the real-time mode. This study presents a new flexible potentiometric sensor system (FPSS) for non-invasive determination of the human skin AOA, which is based on flexible film electrodes (FFEs) and membrane containing a mediator ([Fe(CN)6]3–/4–). Low-cost available materials and scalable technologies were used for FFEs manufacturing. The indicator FFE was fabricated based on polyethylene terephthalate (PET) film and carbon veil (CV) by single-sided hot lamination. The reference FFE was fabricated based on PET film and silver paint by using screen printing, which was followed by the electrodeposition of precipitate containing a mixture of silver chloride and silver ferricyanide (SCSF). The three-electrode configuration of the FPSS, including two indicator FFEs (CV/PET) and one reference FFE (SCSF/Ag/PET), has been successfully used for measuring the skin AOA and evaluating the impact of phytocosmetic products. FPSS provides reproducible (RSD ≤ 7%) and accurate (recovery of antioxidants is almost 100%) results, which allows forecasting its broad applicability in human skin AOA monitoring as well as for evaluating the effectiveness of topically and orally applied antioxidants.


Sign in / Sign up

Export Citation Format

Share Document