scholarly journals Targeted re-sequencing confirms the importance of chemosensory genes in aphid host race differentiation

2016 ◽  
Vol 26 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Isobel Eyres ◽  
Ludovic Duvaux ◽  
Karim Gharbi ◽  
Rachel Tucker ◽  
David Hopkins ◽  
...  

2009 ◽  
Vol 18 (9) ◽  
pp. 1946-1962 ◽  
Author(s):  
D. ZUBER ◽  
A. WIDMER


Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.



2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.



2021 ◽  
Vol 22 (2) ◽  
pp. 822
Author(s):  
Owen Hudson ◽  
Sumyya Waliullah ◽  
James C. Fulton ◽  
Pingsheng Ji ◽  
Nicholas S. Dufault ◽  
...  

Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (FON), is pathogenic only to watermelon and has become one of the main limiting factors in watermelon production internationally. Detection methods for this pathogen are limited, with few published molecular assays available to differentiate FON from other formae speciales of F. oxysporum. FON has four known races that vary in virulence but are difficult and costly to differentiate using traditional inoculation methods and only race 2 can be differentiated molecularly. In this study, genomic and chromosomal comparisons facilitated the development of a conventional polymerase chain reaction (PCR) assay that could differentiate race 3 from races 1 and 2, and by using two other published PCR markers in unison with the new marker, the three races could be differentiated. The new PCR marker, FNR3-F/FNR3-R, amplified a 511 bp region on the “pathogenicity chromosome” of the FON genome that is absent in race 3. FNR3-F/FNR3-R detected genomic DNA down to 2.0 pg/µL. This marker, along with two previously published FON markers, was successfully applied to test over 160 pathogenic FON isolates from Florida, Georgia, and South Carolina. Together, these three FON primer sets worked well for differentiating races 1, 2, and 3 of FON. For each marker, a greater proportion (60 to 90%) of molecular results agreed with the traditional bioassay method of race differentiation compared to those that did not. The new PCR marker should be useful to differentiate FON races and improve Fusarium wilt research.



2013 ◽  
Vol 9 (5) ◽  
pp. 481-495 ◽  
Author(s):  
Nicolas Glaser ◽  
Aurore Gallot ◽  
Fabrice Legeai ◽  
Nicolas Montagné ◽  
Erwan Poivet ◽  
...  


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Manuel Tritschler ◽  
Jutta J. Vollmann ◽  
Orlando Yañez ◽  
Nor Chejanovsky ◽  
Karl Crailsheim ◽  
...  


2008 ◽  
Vol 9 (5) ◽  
pp. 560-567 ◽  
Author(s):  
Johan A. Stenberg ◽  
E. Petter Axelsson


Author(s):  
Yu Pan ◽  
Xinxin Zhang ◽  
Zhun Wang ◽  
Lizhong Qi ◽  
Xinsheng Zhang ◽  
...  

Abstract The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive pest that causes damage to rice crops worldwide. The olfactory system is critical for host or mate location by weevils, but only limited information about the molecular mechanism of olfaction-related behaviour has been reported in this insect. In this study, we conducted SMRT-seq transcriptome analysis and obtained 54,378 transcripts, 38,706 of which were annotated. Based on these annotations, we identified 40 candidate chemosensory genes, including 31 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs) and three sensory neuron membrane proteins (SNMPs). Phylogenetic analysis showed that LoryOBPs, LoryCSPs and LorySNMPs were distributed in various clades. The results of tissue expression patterns indicated that LoryOBPs were highly abundant in the antennae, whereas LoryCSPs were highly abundant not only in the antennae but also in the abdomen, head and wings. Our findings substantially expand the gene database of L. oryzophilus and may serve as a basis for identifying novel targets to disrupt key olfactory genes, potentially providing an eco-friendly strategy to control this pest in the future.



Sign in / Sign up

Export Citation Format

Share Document