scholarly journals Precision‐cut lung slices: a powerful ex vivo model to investigate respiratory infectious diseases

2021 ◽  
Author(s):  
Flávia Viana ◽  
Cecilia M. O’Kane ◽  
Gunnar N. Schroeder
Author(s):  
Guanghui Liu ◽  
Linnea Särén ◽  
Helena Douglasson ◽  
Xiao-Hong Zhou ◽  
Per M. Åberg ◽  
...  

Author(s):  
Carmen Amelia Molina-Torres ◽  
Oscar Noé Flores-Castillo ◽  
Irma Edith Carranza-Torres ◽  
Nancy Elena Guzmán-Delgado ◽  
Ezequiel Viveros-Valdez ◽  
...  

Abstract Background Multidrug-resistant infections due to Mycobacterium abscessus often require complex and prolonged regimens for treatment. Here, we report the evaluation of a new ex vivo antimicrobial susceptibility testing model using organotypic cultures of murine precision-cut lung slices, an experimental model in which metabolic activity, and all the usual cell types of the organ are found while the tissue architecture and the interactions between the different cells are maintained. Methods Precision cut lung slices (PCLS) were prepared from the lungs of wild type BALB/c mice using the Krumdieck® tissue slicer. Lung tissue slices were ex vivo infected with the virulent M. abscessus strain L948. Then, we tested the antimicrobial activity of two drugs: imipenem (4, 16 and 64 μg/mL) and tigecycline (0.25, 1 and 4 μg/mL), at 12, 24 and 48 h. Afterwards, CFUs were determined plating on blood agar to measure the surviving intracellular bacteria. The viability of PCLS was assessed by Alamar Blue assay and corroborated using histopathological analysis. Results PCLS were successfully infected with a virulent strain of M. abscessus as demonstrated by CFUs and detailed histopathological analysis. The time-course infection, including tissue damage, parallels in vivo findings reported in genetically modified murine models for M. abscessus infection. Tigecycline showed a bactericidal effect at 48 h that achieved a reduction of > 4log10 CFU/mL against the intracellular mycobacteria, while imipenem showed a bacteriostatic effect. Conclusions The use of this new organotypic ex vivo model provides the opportunity to test new drugs against M. abscessus, decreasing the use of costly and tedious animal models.


2021 ◽  
Author(s):  
Monika Niehof ◽  
Stella Reamon-Buettner ◽  
Olga Danow ◽  
Tanja Hansen ◽  
Katherina Sewald

Abstract ObjectiveHuman precision cut lung slices (PCLS) are widely used as an ex vivo model system for drug discovery and development of new therapies. PCLS reflect the functional heterogeneity of lung tissue and possess relevant lung cell types. We thus determined the use of PCLS in studying non-coding RNAs notably miRNAs, which are important gene regulatory molecules. Since miRNAs play key role as mediators of respiratory diseases, they can serve as valuable prognostic or diagnostic biomarkers, and in therapeutic interventions, of lung diseases. A technical limitation though is the vast amount of agarose in PCLS which impedes (mi)RNA extraction by standard procedures. Here we modified our recently published protocol for RNA 29 isolation from PCLS to enable miRNA readouts. Results The modified method relies on the separation of lysis and precipitation steps, and a clean-up procedure with specific magnetic beads. We obtained successfully quality miRNA amenable for downstream applications such as RTqPCR and whole transcriptome miRNA analysis. Comparison of miRNA profiles in PCLS with published data from human lung, identified all important miRNAs regulated in IPF, COPD, asthma or lung cancer. Therefore, this shows suitability of the method for analyzing miRNA targets and biomarkers in the valuable human 38 PCLS model.


2017 ◽  
Vol 312 (6) ◽  
pp. L896-L902 ◽  
Author(s):  
Hani N. Alsafadi ◽  
Claudia A. Staab-Weijnitz ◽  
Mareike Lehmann ◽  
Michael Lindner ◽  
Britta Peschel ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating chronic interstitial lung disease (ILD) characterized by lung tissue scarring and high morbidity. Lung epithelial injury, myofibroblast activation, and deranged repair are believed to be key processes involved in disease onset and progression, but the exact molecular mechanisms behind IPF remain unclear. Several drugs have been shown to slow disease progression, but treatments that halt or reverse IPF progression have not been identified. Ex vivo models of human lung have been proposed for drug discovery, one of which is precision-cut lung slices (PCLS). Although PCLS production from IPF explants is possible, IPF explants are rare and typically represent end-stage disease. Here we present a novel model of early fibrosis-like changes in human PCLS derived from patients without ILD/IPF using a combination of profibrotic growth factors and signaling molecules (transforming growth factor-β, tumor necrosis factor-α, platelet-derived growth factor-AB, and lysophosphatidic acid). Fibrotic-like changes of PCLS were qualitatively analyzed by histology and immunofluorescence and quantitatively by water-soluble tetrazolium-1, RT-qPCR, Western blot analysis, and ELISA. PCLS remained viable after 5 days of treatment, and fibrotic gene expression ( FN1, SERPINE1, COL1A1, CTGF, MMP7, and ACTA2) increased as early as 24 h of treatment, with increases in protein levels at 48 h and increased deposition of extracellular matrix. Alveolar epithelium reprogramming was evident by decreases in surfactant protein C and loss of HOPX. In summary, using human-derived PCLS, we established a novel ex vivo model that displays characteristics of early fibrosis and could be used to evaluate novel therapies and study early-stage IPF pathomechanisms.


Author(s):  
Jonas Tigges ◽  
Florian Eggerbauer ◽  
Franz Worek ◽  
Horst Thiermann ◽  
Ursula Rauen ◽  
...  

Precision cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4 °C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+ and CD90+ cells analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction after acetylcholine stimulus. After 14 days cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared to DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+ and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days storage in DMEM/F-12 but in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.


Author(s):  
Matea Cedilak ◽  
Mihailo Banjanac ◽  
Daniela Belamarić ◽  
Ivan Faraho ◽  
Ines Glojnarić ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 614-614 ◽  
Author(s):  
Gunnar Wendt-Nordahl ◽  
Stefanie Huckele ◽  
Patrick Honeck ◽  
Peter Aiken ◽  
Thomas Knoll ◽  
...  

2017 ◽  
Author(s):  
J Houriet ◽  
YE Arnold ◽  
C Petit ◽  
YN Kalia ◽  
JL Wolfender

1995 ◽  
Vol 73 (02) ◽  
pp. 219-222 ◽  
Author(s):  
Manuel Monreal ◽  
Luis Monreal ◽  
Rafael Ruiz de Gopegui ◽  
Yvonne Espada ◽  
Ana Maria Angles ◽  
...  

SummaryThe APTT has been considered the most suitable candidate to monitor the anticoagulant activity of hirudin. However, its use is hampered by problems of standardization, which make the results heavily dependent on the responsiveness of the reagent used. Our aim was to investigate if this different responsiveness of different reagents when added in vitro is to be confirmed in an ex vivo study.Two different doses of r-hirudin (CGP 39393), 0.3 mg/kg and 1 mg/kg, were administered subcutaneously to 20 New Zealand male rabbits, and the differences in prolongation of APTT 2 and 12 h later were compared, using 8 widely used commercial reagents. All groups exhibited a significant prolongation of APTT 2 h after sc administration of hirudin, both at low and high doses. But this prolongation persisted 12 h later only when the PTTa reagent (Boehringer Mannheim) was used. In general, hirudin prolonged the APTT most with the silica- based reagents.In a further study, we compared the same APTT reagents in an in vitro study in which normal pooled plasma was mixed with increasing amount of hirudin. We failed to confirm a higher sensitivity for silica- containing reagents. Thus, we conclude that subcutaneous administration of hirudin prolongs the APTT most with the silica-based reagents, but this effect is exclusive for the ex vivo model.


Sign in / Sign up

Export Citation Format

Share Document