Precision cut lung slices: an ex vivo model for assessing the impact of immunomodulatory therapeutics on lung immune responses

Author(s):  
Guanghui Liu ◽  
Linnea Särén ◽  
Helena Douglasson ◽  
Xiao-Hong Zhou ◽  
Per M. Åberg ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Rishi Man Chugh ◽  
Payel Bhanja ◽  
Andrew Norris ◽  
Subhrajit Saha

The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.


2020 ◽  
Author(s):  
Kévin Brunet ◽  
François Arrivé ◽  
Jean-Philippe Martellosio ◽  
Isabelle Lamarche ◽  
Sandrine Marchand ◽  
...  

Abstract Alveolar macrophages (AM) are the first-line lung defense against Mucorales in pulmonary mucormycosis. Since corticosteroid use is a known risk factor for mucormycosis, the aim of this study was to describe the role of corticosteroids on AM capacities to control Lichtheimia corymbifera spore growth using a new ex vivo model. An in vivo mouse model was developed to determine the acetate cortisone dose able to trigger pulmonary invasive infection. Then, in the ex vivo model, male BALB/c mice were pretreated with the corticosteroid regimen triggering invasive infection, before AM collection through bronchoalveolar lavage. AMs from corticosteroid-treated mice and untreated control AMs were then exposed to L. corymbifera spores in vitro (ratio 1:5). AM control of fungal growth, adherence/phagocytosis, and oxidative burst were assessed using optical densities by spectrophotometer, flow cytometry, and 2', 7'-dichlorofluoresceine diacetate fluorescence, respectively. Cortisone acetate at 500 mg/kg, at D-3 and at D0, led to pulmonary invasive infection at D3. Co-incubated spores and AMs from corticosteroid-treated mice had significantly higher absorbance (fungal growth) than co-incubated spores and control AMs, at 24 h (P = .025), 36 h (P = .004), and 48 h (P = .001). Colocalization of spores with AMs from corticosteroid-treated mice was significantly lower than for control AMs (7.6 ± 1.9% vs 22.3 ± 5.8%; P = .003), reflecting spore adherence and phagocytosis inhibition. Finally, oxidative burst was significantly increased when control AMs were incubated with spores (P = 0.029), while corticosteroids hampered oxidative burst from treated AMs (P = 0.321). Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease in our ex vivo model. Lay Summary The aim of this study was to describe the impact of corticosteroids on alveolar macrophage (AM) capacities to control Mucorales growth in a new murine ex vivo model. Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease.


Cosmetics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 78
Author(s):  
Claire Tubia ◽  
Alfonso Fernández-Botello ◽  
Jan Dupont ◽  
Eni Gómez ◽  
Jérôme Desroches ◽  
...  

As an external appendage, hair is exposed to multiple stresses of different origins such as particles and gases in air, or heavy metals and chemicals in water. So far, little research has addressed the impact of water pollution on hair. The present study describes a new ex vivo model that allowed us to document the adverse effects of water pollutants on the structure of hair proteins, as well as the protective potential of active cosmetic ingredients derived from a biomimetic exopolysaccharide (EPS). The impact of water pollution was evaluated on hair from a Caucasian donor repeatedly immersed in heavy metal-containing water. Heavy metal retention in and on hair was then quantified using Inductively Coupled Plasma Spectrometry (ICP/MS). The adverse effects of heavy metals on the internal structure of hair and its prevention by the EPS were assessed through measurement of keratin birefringence. Notably, the method allows the monitoring of the organization of keratin fibers and therefore the initial change on it in order to modulate the global damage in the hair. Results revealed an increasing amount of lead, cadmium and copper, following multiple exposures to polluted water. In parallel, the structure of keratin was also altered with exposures. However, heavy metal-induced keratin fiber damage could be prevented in the presence of the tested EPS, avoiding more drastic hair problems, such as lack of shine, or decrease in strength, due to damage accumulation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1014
Author(s):  
Simone Ladel ◽  
Frank Maigler ◽  
Johannes Flamm ◽  
Patrick Schlossbauer ◽  
Alina Handl ◽  
...  

Although we have recently reported the involvement of neonatal Fc receptor (FcRn) in intranasal transport, the transport mechanisms are far from being elucidated. Ex vivo porcine olfactory tissue, primary cells from porcine olfactory epithelium (OEPC) and the human cell line RPMI 2650 were used to evaluate the permeation of porcine and human IgG antibodies through the nasal mucosa. IgGs were used in their wild type and deglycosylated form to investigate the impact of glycosylation. Further, the expression of FcRn and Fc-gamma receptor (FCGR) and their interaction with IgG were analyzed. Comparable permeation rates for human and porcine IgG were observed in OEPC, which display the highest expression of FcRn. Only traces of porcine IgGs could be recovered at the basolateral compartment in ex vivo olfactory tissue, while human IgGs reached far higher levels. Deglycosylated human IgG showed significantly higher permeation in comparison to the wild type in RPMI 2650 and OEPC, but insignificantly elevated in the ex vivo model. An immunoprecipitation with porcine primary cells and tissue identified FCGR2 as a potential interaction partner in the nasal mucosa. Glycosylation sensitive receptors appear to be involved in the uptake, transport, but also degradation of therapeutic IgGs in the airway epithelial layer.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Leslie P. Cousens ◽  
Yan Su ◽  
Elizabeth McClaine ◽  
Xin Li ◽  
Frances Terry ◽  
...  

HLA class II-restricted regulatory T cell (Treg) epitopes in IgG (also called “Tregitopes”) have been reported to suppress immune responses to coadministered antigens by stimulating the expansion of natural Tregs (nTregs). Here we evaluate their impact on human immune responses to islet cell antigensex vivoand on the modulation of type 1 diabetes (T1D) in a murine modelin vivo. Co-administration of Tregitopes and T1D antigens delayed development of hyperglycemia and reduced the incidence of diabetes in NOD mice. Suppression of diabetes could be observed even following onset of disease. To measure the impact of Tregitope treatment on T cell responses, we evaluated the effect of Tregitope treatment in DO11.10 mice. Upregulation of FoxP3 in KJ1-26-stained OVA-specific CD4+T cells was observed following treatment of DO11.10 mice with Tregitopes, along with reductions in anti-OVA Ig and T effector responses. Inex vivostudies of human T cells, peripheral blood mononuclear cells’ (PBMC) responses to GAD65 epitopes in the presence and absence of Tregitope were variable. Suppression of immune responses to GAD65 epitopesex vivoby Tregitope appeared to be more effective in assays using PBMC from a newly diagnosed diabetic subject than for other more established diabetic subjects, and correlation of the degree of suppression with predicted HLA restriction of the Tregitopes was confirmed. Implementation of these defined regulatory T cell epitopes for therapy of T1D and other autoimmune diseases may lead to a paradigm shift in disease management.


2008 ◽  
Vol 231 (1) ◽  
pp. 68-76 ◽  
Author(s):  
M. Henjakovic ◽  
K. Sewald ◽  
S. Switalla ◽  
D. Kaiser ◽  
M. Müller ◽  
...  

Author(s):  
Carmen Amelia Molina-Torres ◽  
Oscar Noé Flores-Castillo ◽  
Irma Edith Carranza-Torres ◽  
Nancy Elena Guzmán-Delgado ◽  
Ezequiel Viveros-Valdez ◽  
...  

Abstract Background Multidrug-resistant infections due to Mycobacterium abscessus often require complex and prolonged regimens for treatment. Here, we report the evaluation of a new ex vivo antimicrobial susceptibility testing model using organotypic cultures of murine precision-cut lung slices, an experimental model in which metabolic activity, and all the usual cell types of the organ are found while the tissue architecture and the interactions between the different cells are maintained. Methods Precision cut lung slices (PCLS) were prepared from the lungs of wild type BALB/c mice using the Krumdieck® tissue slicer. Lung tissue slices were ex vivo infected with the virulent M. abscessus strain L948. Then, we tested the antimicrobial activity of two drugs: imipenem (4, 16 and 64 μg/mL) and tigecycline (0.25, 1 and 4 μg/mL), at 12, 24 and 48 h. Afterwards, CFUs were determined plating on blood agar to measure the surviving intracellular bacteria. The viability of PCLS was assessed by Alamar Blue assay and corroborated using histopathological analysis. Results PCLS were successfully infected with a virulent strain of M. abscessus as demonstrated by CFUs and detailed histopathological analysis. The time-course infection, including tissue damage, parallels in vivo findings reported in genetically modified murine models for M. abscessus infection. Tigecycline showed a bactericidal effect at 48 h that achieved a reduction of > 4log10 CFU/mL against the intracellular mycobacteria, while imipenem showed a bacteriostatic effect. Conclusions The use of this new organotypic ex vivo model provides the opportunity to test new drugs against M. abscessus, decreasing the use of costly and tedious animal models.


2021 ◽  
Author(s):  
Monika Niehof ◽  
Stella Reamon-Buettner ◽  
Olga Danow ◽  
Tanja Hansen ◽  
Katherina Sewald

Abstract ObjectiveHuman precision cut lung slices (PCLS) are widely used as an ex vivo model system for drug discovery and development of new therapies. PCLS reflect the functional heterogeneity of lung tissue and possess relevant lung cell types. We thus determined the use of PCLS in studying non-coding RNAs notably miRNAs, which are important gene regulatory molecules. Since miRNAs play key role as mediators of respiratory diseases, they can serve as valuable prognostic or diagnostic biomarkers, and in therapeutic interventions, of lung diseases. A technical limitation though is the vast amount of agarose in PCLS which impedes (mi)RNA extraction by standard procedures. Here we modified our recently published protocol for RNA 29 isolation from PCLS to enable miRNA readouts. Results The modified method relies on the separation of lysis and precipitation steps, and a clean-up procedure with specific magnetic beads. We obtained successfully quality miRNA amenable for downstream applications such as RTqPCR and whole transcriptome miRNA analysis. Comparison of miRNA profiles in PCLS with published data from human lung, identified all important miRNAs regulated in IPF, COPD, asthma or lung cancer. Therefore, this shows suitability of the method for analyzing miRNA targets and biomarkers in the valuable human 38 PCLS model.


Sign in / Sign up

Export Citation Format

Share Document