scholarly journals Stress granule associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat ( Triticum aestivum )

2021 ◽  
Author(s):  
Xuejun Tian ◽  
Zhen Qin ◽  
Yue Zhao ◽  
Jingjing Wen ◽  
Tianyu Lan ◽  
...  
2019 ◽  
Vol 30 (17) ◽  
pp. 2240-2253 ◽  
Author(s):  
Catherine M. Mageeney ◽  
Vassie C. Ware

The functional significance of ribosome heterogeneity in development and differentiation is relatively unexplored. We present the first in vivo evidence of ribosome heterogeneity playing a role in specific mRNA translation in a multicellular eukaryote. Eukaryotic-specific ribosomal protein paralogues eRpL22 and eRpL22-like are essential in development and required for sperm maturation and fertility in Drosophila. eRpL22 and eRpL22-like roles in spermatogenesis are not completely interchangeable. Flies depleted of eRpL22 and rescued by eRpL22-like overexpression have reduced fertility, confirming that eRpL22-like cannot substitute fully for eRpL22 function, and that paralogues have functionally distinct roles, not yet defined. We investigated the hypothesis that specific RNAs differentially associate with eRpL22 or eRpL22-like ribosomes, thereby establishing distinct ribosomal roles. RNA-seq identified 12,051 transcripts (mRNAs/noncoding RNAs) with 50% being enriched on specific polysome types. Analysis of ∼10% of the most abundant mRNAs suggests ribosome specialization for translating groups of mRNAs expressed at specific stages of spermatogenesis. Further, we show enrichment of “model” eRpL22-like polysome-associated testis mRNAs can occur outside the germline within S2 cells transfected with eRpL22-like, indicating that germline-specific factors are not required for selective translation. This study reveals specialized roles in translation for eRpL22 and eRpL22-like ribosomes in germline differentiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sterling Field ◽  
William Craig Conner ◽  
Daniel M. Roberts

During the energy crisis associated with submergence stress, plants restrict mRNA translation and rapidly accumulate stress granules that act as storage hubs for arrested mRNA complexes. One of the proteins associated with hypoxia-induced stress granules in Arabidopsis thaliana is the calcium-sensor protein CALMODULIN-LIKE 38 (CML38). Here, we show that SUPPRESSOR OF GENE SILENCING 3 (SGS3) is a CML38-binding protein, and that SGS3 and CML38 co-localize within hypoxia-induced RNA stress granule-like structures. Hypoxia-induced SGS3 granules are subject to turnover by autophagy, and this requires both CML38 as well as the AAA+-ATPase CELL DIVISION CYCLE 48A (CDC48A). CML38 also interacts directly with CDC48A, and CML38 recruits CDC48A to CML38 granules in planta. Together, this work demonstrates that SGS3 associates with stress granule-like structures during hypoxia stress that are subject to degradation by CML38 and CDC48-dependent autophagy. Further, the work identifies direct regulatory targets for the hypoxia calcium-sensor CML38, and suggest that CML38 association with stress granules and associated regulation of autophagy may be part of the RNA regulatory program during hypoxia stress.


2014 ◽  
Vol 211 (2) ◽  
pp. 263-280 ◽  
Author(s):  
Hirofumi Sawada ◽  
Toshie Saito ◽  
Nils P. Nickel ◽  
Tero-Pekka Alastalo ◽  
Jason P. Glotzbach ◽  
...  

Idiopathic pulmonary arterial hypertension (PAH [IPAH]) is an insidious and potentially fatal disease linked to a mutation or reduced expression of bone morphogenetic protein receptor 2 (BMPR2). Because intravascular inflammatory cells are recruited in IPAH pathogenesis, we hypothesized that reduced BMPR2 enhances production of the potent chemokine granulocyte macrophage colony-stimulating factor (GM-CSF) in response to an inflammatory perturbation. When human pulmonary artery (PA) endothelial cells deficient in BMPR2 were stimulated with tumor necrosis factor (TNF), a twofold increase in GM-CSF was observed and related to enhanced messenger RNA (mRNA) translation. The mechanism was associated with disruption of stress granule formation. Specifically, loss of BMPR2 induced prolonged phospho-p38 mitogen-activated protein kinase (MAPK) in response to TNF, and this increased GADD34–PP1 phosphatase activity, dephosphorylating eukaryotic translation initiation factor (eIF2α), and derepressing GM-CSF mRNA translation. Lungs from IPAH patients versus unused donor controls revealed heightened PA expression of GM-CSF co-distributing with increased TNF and expanded populations of hematopoietic and endothelial GM-CSF receptor α (GM-CSFRα)–positive cells. Moreover, a 3-wk infusion of GM-CSF in mice increased hypoxia-induced PAH, in association with increased perivascular macrophages and muscularized distal arteries, whereas blockade of GM-CSF repressed these features. Thus, reduced BMPR2 can subvert a stress granule response, heighten GM-CSF mRNA translation, increase inflammatory cell recruitment, and exacerbate PAH.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Carmela Sidrauski ◽  
Anna M McGeachy ◽  
Nicholas T Ingolia ◽  
Peter Walter

Previously, we identified ISRIB as a potent inhibitor of the integrated stress response (ISR) and showed that ISRIB makes cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (<xref ref-type="bibr" rid="bib54">Sidrauski et al., 2013</xref>). Here, we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation, and cognitive loss.


Blood ◽  
2016 ◽  
Vol 127 (4) ◽  
pp. 449-457 ◽  
Author(s):  
Alison Yeomans ◽  
Stephen M. Thirdborough ◽  
Beatriz Valle-Argos ◽  
Adam Linley ◽  
Sergey Krysov ◽  
...  

Key Points BCR stimulation promotes mRNA translation in CLL cells, including of the oncoprotein, MYC, and is inhibited by ibrutinib or tamatinib. Differences in mechanisms of regulation of mRNA translation in CLL and normal blood B cells may highlight potential targets for therapy.


Oncogene ◽  
2008 ◽  
Vol 28 (1) ◽  
pp. 128-139 ◽  
Author(s):  
F Brenet ◽  
N D Socci ◽  
N Sonenberg ◽  
E C Holland

Author(s):  
Caspar Glock ◽  
Anne Biever ◽  
Georgi Tushev ◽  
Ina Bartnik ◽  
Belquis Nassim-Assir ◽  
...  

AbstractTo form and modify synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes unique logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of mRNAs near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally1. It is not known, however if, how and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA-seq and Ribo-seq from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies as well as dendrites and axons (neuropil). More than 4800 transcripts were translated in synaptic regions. Thousands of transcripts were differentially translated between somatic and synaptic regions, with scaffold and signaling molecules mostly arising from local sources. Furthermore, specific mRNA features were identified that regulate the efficiency of mRNA translation. The findings overturn the view that local translation is a minor source of synaptic protein2 and indicate that on-site translational control is an important mechanism to control synaptic strength.


Sign in / Sign up

Export Citation Format

Share Document