Self‐assembled peptide hydrogel scaffolds with VEGF and BMP‐2 enhanced in vitro angiogenesis and osteogenesis

Oral Diseases ◽  
2021 ◽  
Author(s):  
Ruijuan Zhang ◽  
Yang Liu ◽  
Yingqiu Qi ◽  
Ying Zhao ◽  
Guangjun Nie ◽  
...  
Soft Matter ◽  
2021 ◽  
Author(s):  
GÜNNUR ONAK ◽  
Oğuzhan Gökmen ◽  
Ziyşan Buse Çevik ◽  
Ozan Karaman

Fabrication of vascularized tissue constructs plays an integral role in guiding to create clinically relevant tissues. Scaffold materials should be sufficiently vascularized to mimic functional and complex native tissues. Herein,...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1906
Author(s):  
Mona Atabakhshi-Kashi ◽  
Mónica Carril ◽  
Hossein Mahdavi ◽  
Wolfgang J. Parak ◽  
Carolina Carrillo-Carrion ◽  
...  

Nanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important. Herein, we performed the effective conjugation of antibodies onto a fluorescent NP assembly, which consisted of fluorinated Quantum Dots (QD) self-assembled through fluorine–fluorine hydrophobic interactions. Cellular uptake studies by confocal microscopy and flow cytometry revealed that the NP assembly underwent the same uptake procedure as individual NPs; that is, the antibodies retained their targeting ability once attached to the nanoassembly, and the NP assembly preserved its intrinsic properties (i.e., fluorescence in the case of QD nanoassembly).


2021 ◽  
pp. 105592
Author(s):  
Anahita Abdali ◽  
Denisa Baci ◽  
Isabella Damiani ◽  
Federica Belloni ◽  
Carlo De Dominicis ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


2014 ◽  
Vol 2 (30) ◽  
pp. 4848-4861 ◽  
Author(s):  
Santosh Yadav ◽  
Manohar Mahato ◽  
Rajiv Pathak ◽  
Diksha Jha ◽  
Bipul Kumar ◽  
...  

An amphiphilic peptide–aminoglycoside (Pep–Neo) conjugate has been synthesized, self-assembled into nanostructures and evaluated for its multifunctional properties.


2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


1985 ◽  
Vol 100 (4) ◽  
pp. 1185-1191 ◽  
Author(s):  
L Evans ◽  
T Mitchison ◽  
M Kirschner

The capacity of the centrosome to influence the lattice structure of nucleated microtubules was studied in vitro. Brain microtubules self-assembled to give predominantly (98%) 14-protofilament microtubules. However, under exactly the same conditions of assembly they grew off of purified centrosomes from neuroblastoma cells to give mostly (82%) 13-protofilament microtubules. Thus, the nucleation sites on the centrosome constrained the microtubule lattice to yield the number of protofilaments usually found in vivo.


Sign in / Sign up

Export Citation Format

Share Document