scholarly journals The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport inArabidopsis

2016 ◽  
Vol 39 (4) ◽  
pp. 804-822 ◽  
Author(s):  
Belén Naranjo ◽  
Clara Mignée ◽  
Anja Krieger-Liszkay ◽  
Dámaso Hornero-Méndez ◽  
Lourdes Gallardo-Guerrero ◽  
...  
Author(s):  
Suresh Tula ◽  
Fahimeh Shahinnia ◽  
Michael Melzer ◽  
Twan Rutten ◽  
Rodrigo Gómez ◽  
...  

AbstractThe ability of plants to maintain photosynthesis in a dynamically changing environment is of central importance for their growth. As their photosynthetic machinery typically cannot adapt rapidly to fluctuations in the intensity of radiation, the level of photosynthetic efficiency is not always optimal. Cyanobacteria, algae, non-vascular plants (mosses and liverworts) and gymnosperms all produce flavodiirons (Flvs), a class of proteins not represented in the angiosperms; these proteins act to mitigate the photoinhibition of photosystem I. Here, genes specifying two cyanobacterial Flvs have been expressed in the chloroplasts of Arabidopsis thaliana in an attempt to improve the robustness of Photosystem I (PSI). The expression of Flv1 and Flv3 together shown to enhance the efficiency of the utilization of light and to boost the plant’s capacity to accumulate biomass. Based on an assessment of the chlorophyll fluorescence in the transgenic plants, the implication was that photosynthetic activity (including electron transport flow and non-photochemical quenching during a dark-to-light transition) was initiated earlier in the transgenic than in wild type plants. The improved photosynthetic performance of the transgenics was accompanied by an increased production of ATP, an acceleration of carbohydrate metabolism and a more pronounced partitioning of sucrose into starch. The indications are that Flvs are able to establish an efficient electron sink downstream of PSI, thereby ensuring that the photosynthetic electron transport chain remains in a more oxidized state. The expression of Flvs in a plant acts to both protect photosynthesis and to control the ATP/NADPH ratio; together, their presence is beneficial for the plant’s growth potential.


2019 ◽  
Vol 61 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Alessandra Bellan ◽  
Francesca Bucci ◽  
Giorgio Perin ◽  
Alessandro Alboresi ◽  
Tomas Morosinotto

Abstract In nature, photosynthetic organisms are exposed to highly dynamic environmental conditions where the excitation energy and electron flow in the photosynthetic apparatus need to be continuously modulated. Fluctuations in incident light are particularly challenging because they drive oversaturation of photosynthesis with consequent oxidative stress and photoinhibition. Plants and algae have evolved several mechanisms to modulate their photosynthetic machinery to cope with light dynamics, such as thermal dissipation of excited chlorophyll states (non-photochemical quenching, NPQ) and regulation of electron transport. The regulatory mechanisms involved in the response to light dynamics have adapted during evolution, and exploring biodiversity is a valuable strategy for expanding our understanding of their biological roles. In this work, we investigated the response to fluctuating light in Nannochloropsis gaditana, a eukaryotic microalga of the phylum Heterokonta originating from a secondary endosymbiotic event. Nannochloropsis gaditana is negatively affected by light fluctuations, leading to large reductions in growth and photosynthetic electron transport. Exposure to light fluctuations specifically damages photosystem I, likely because of the ineffective regulation of electron transport in this species. The role of NPQ, also assessed using a mutant strain specifically depleted of this response, was instead found to be minor, especially in responding to the fastest light fluctuations.


2016 ◽  
Vol 43 (5) ◽  
pp. 448 ◽  
Author(s):  
Xiao-Ping Yi ◽  
Ya-Li Zhang ◽  
He-Sheng Yao ◽  
Hong-Hai Luo ◽  
Ling Gou ◽  
...  

To better understand the adaptation mechanisms of the photosynthetic apparatus of cotton plants to water deficit conditions, the influence of water deficit on photosynthesis, chlorophyll a fluorescence and the activities of antioxidant systems were determined simultaneously in Gossypium hirsutum L. cv. Xinluzao 45 (upland cotton) and Gossypium barbadense L. cv. Xinhai 21 (pima cotton). Water deficit decreased photosynthesis in both cotton species, but did not decrease chlorophyll content or induce any sustained photoinhibition in either cotton species. Water deficit increased ETR/4 − AG, where ETR/4 estimates the linear photosynthetic electron flux and AG is the gross rate of carbon assimilation. The increase in ETR/4 − AG, which represents an increase in photorespiration and alternative electron fluxes, was particularly pronounced in Xinluzao 45. In Xinluzao 45, water deficit increased the activities of antioxidative enzymes, as well as the contents of reactive oxygen species (ROS), which are related to the Mehler reaction. In contrast, moderate water deficit particularly increased non-photochemical quenching (NPQ) in Xinhai 21. Our results suggest that Xinluzao 45 relied on enhanced electron transport such as photorespiration and the Mehler reaction to dissipate excess light energy under mild and moderate water deficit. Xinhai 21 used enhanced photorespiration for light energy utilisation under mild water deficit but, when subjected to moderate water deficit, possessed a high capacity for dissipating excess light energy via heat dissipation.


2011 ◽  
Vol 142 (3) ◽  
pp. 247-264 ◽  
Author(s):  
Satoko Sanda ◽  
Kazuo Yoshida ◽  
Masayoshi Kuwano ◽  
Tadayuki Kawamura ◽  
Yuri Nakajima Munekage ◽  
...  

2019 ◽  
Vol 60 (12) ◽  
pp. 2660-2671 ◽  
Author(s):  
Kyohei Harada ◽  
Takatoshi Arizono ◽  
Ryoichi Sato ◽  
Mai Duy Luu Trinh ◽  
Akira Hashimoto ◽  
...  

Abstract Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.


2021 ◽  
Vol 53 (5) ◽  
pp. 409-414
Author(s):  
Richard P. Beckett ◽  
Farida V. Minibayeva ◽  
Kwanele W. G. Mkhize

AbstractNon-photochemical quenching (NPQ) plays an important role in protecting photosynthetic organisms from photoinhibition by dissipating excess light energy as heat. However, excess NPQ can greatly reduce the quantum yield of photosynthesis at lower light levels. Recently, there has been considerable interest in understanding how plants balance NPQ to ensure optimal productivity in environments in which light levels are rapidly changing. In the present study, chlorophyll fluorescence was used to study the induction and relaxation of non-photochemical quenching (NPQ) in the dark and the induction of photosynthesis in ten species of lichens, five sampled from exposed and five sampled from shaded habitats. Here we show that the main difference between sun and shade lichens is the rate at which NPQ relaxes in the dark, rather than the speed that photosynthesis starts upon illumination. During the first two minutes in the dark, NPQ values in the five sun species declined only by an average of 2%, while by contrast, in shade species the average decline was 40%. For lichens growing in microhabitats where light levels are rapidly changing, rapid relaxation of NPQ may enable their photobionts to use the available light most efficiently.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Prashant More ◽  
Parinita Agarwal ◽  
Priyanka S. Joshi ◽  
Pradeep K. Agarwal

AbstractSalinity is one of the major factors negatively affecting crop productivity. WRKY transcription factors (TFs) are involved in salicylic acid (SA) mediated cellular reactive oxygen species homeostasis in response to different stresses, including salinity. Therefore, the effect of NaCl, NaCl + SA and SA treatments on different photosynthesis-related parameters and wax metabolites were studied in the Jatropha curcas WRKY (JcWRKY) overexpressing tobacco lines. JcWRKY transgenics showed improved photosynthesis rate, stomatal conductance, intercellular CO2 concentration/ambient CO2 concentration ratio (Ci/Ca ratio), electron transport rate (ETR), photosynthesis efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of PSII electron transport (ΦPSII) in response to salinity stress, while exogenous SA application had subtle effect on these parameters. Alkane, the major constituent of wax showed maximum accumulation in transgenics exposed to NaCl. Other wax components like fatty alcohol, carboxylic acid and fatty acid were also higher in transgenics with NaCl + SA and SA treatments. Interestingly, the transgenics showed a higher number of open stomata in treated plants as compared to wild type (WT), indicating less perception of stress by the transgenics. Improved salinity tolerance in JcWRKY overexpressing tobacco transgenics is associated with photosynthetic efficiency and wax accumulation, mediated by efficient SA signalling. The transgenics showed differential regulation of genes related to photosynthesis (NtCab40, NtLhcb5 and NtRca1), wax accumulation (NtWIN1) and stomatal regulation (NtMUTE, NtMYB-like, NtNCED3-2 and NtPIF3). The present study indicates that JcWRKY is a potential TF facilitating improved photosynthesis with the wax metabolic co-ordination in transgenics during stress.


Sign in / Sign up

Export Citation Format

Share Document