scholarly journals Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato

2017 ◽  
Vol 92 (4) ◽  
pp. 624-637 ◽  
Author(s):  
Gina M. Pham ◽  
Linsey Newton ◽  
Krystle Wiegert-Rininger ◽  
Brieanne Vaillancourt ◽  
David S. Douches ◽  
...  
2019 ◽  
Vol 133 (3) ◽  
pp. 951-966 ◽  
Author(s):  
Maria Kyriakidou ◽  
Sai Reddy Achakkagari ◽  
José Héctor Gálvez López ◽  
Xinyi Zhu ◽  
Chen Yu Tang ◽  
...  

Abstract Key message Twelve potato accessions were selected to represent two principal views on potato taxonomy. The genomes were sequenced and analyzed for structural variation (copy number variation) against three published potato genomes. Abstract The common potato (Solanum tuberosum L.) is an important staple crop with a highly heterozygous and complex tetraploid genome. The other taxa of cultivated potato contain varying ploidy levels (2X–5X), and structural variations are common in the genomes of these species, likely contributing to the diversification or agronomic traits during domestication. Increased understanding of the genomes and genomic variation will aid in the exploration of novel agronomic traits. Thus, sequencing data from twelve potato landraces, representing the four ploidy levels, were used to identify structural genomic variation compared to the two currently available reference genomes, a double monoploid potato genome and a diploid inbred clone of S. chacoense. The results of a copy number variation analysis showed that in the majority of the genomes, while the number of deletions is greater than the number of duplications, the number of duplicated genes is greater than the number of deleted ones. Specific regions in the twelve potato genomes have a high density of CNV events. Further, the auxin-induced SAUR genes (involved in abiotic stress), disease resistance genes and the 2-oxoglutarate/Fe(II)-dependent oxygenase superfamily proteins, among others, had increased copy numbers in these sequenced genomes relative to the references.


PLoS Genetics ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. e1000997 ◽  
Author(s):  
So-Yon Lim ◽  
Tiffany Chan ◽  
Rebecca S. Gelman ◽  
James B. Whitney ◽  
Kara L. O'Brien ◽  
...  

1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


2015 ◽  
Vol 76 (S 01) ◽  
Author(s):  
Georgios Zenonos ◽  
Peter Howard ◽  
Maureen Lyons-Weiler ◽  
Wang Eric ◽  
William LaFambroise ◽  
...  

BIOCELL ◽  
2018 ◽  
Vol 42 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Sergio LAURITO ◽  
Juan A. CUETO ◽  
Jimena PEREZ ◽  
Mar韆 ROQU�

2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


2020 ◽  
Author(s):  
◽  
Evelina Siavrienė

A Molecular and Functional Evaluation of Coding and Non-Coding Genome Sequence Variants and Copy Number Variants


Sign in / Sign up

Export Citation Format

Share Document