The RanBP2 zinc finger domains of chloroplast RNA editing factor OZ1 are required for protein‐protein interactions and conversion of C to U

2021 ◽  
Author(s):  
Andrew B. Gipson ◽  
Maureen R. Hanson ◽  
Stéphane Bentolila
Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6296
Author(s):  
Elena Cesaro ◽  
Angelo Lupo ◽  
Roberta Rapuano ◽  
Arianna Pastore ◽  
Michela Grosso ◽  
...  

The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein–protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1–3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.


1995 ◽  
Vol 15 (5) ◽  
pp. 2448-2456 ◽  
Author(s):  
M Crossley ◽  
M Merika ◽  
S H Orkin

GATA-1, the founding member of a distinctive family of transcription factors, is expressed predominantly in erythroid cells and participates in the expression of numerous erythroid cell-expressed genes. GATA-binding sites are found in the promoters and enhancers of globin and nonglobin erythroid genes as well as in the alpha- and beta-globin locus control regions. To elucidate how GATA-1 may function in a variety of regulatory contexts, we have examined its protein-protein interactions. Here we show that GATA-1 self-associates in solution and in whole-cell extracts and that the zinc finger region of the molecule is sufficient to mediate this interaction. This physical interaction can influence transcription, as GATA-1 self-association is able to recruit a transcriptionally active but DNA-binding-defective derivative of GATA-1 to promoter-bound GATA-1 and result in superactivation. Through in vitro studies with bacterially expressed glutathione S-transferase fusion proteins, we have localized the minimal domain required for GATA-1 self-association to 40 amino acid residues within the C-terminal zinc finger region. Finally, we have detected physical interaction of GATA-1 with other GATA family members (GATA-2 and GATA-3) also mediated through the zinc finger domain. These findings have broad implications for the involvement of GATA factors in transcriptional control. In particular, the interaction of GATA-1 with itself and with other transcription factors may facilitate its function at diverse promoters in erythroid cells and also serve to bring together, or stabilize, loops between distant regulatory elements, such as the globin locus control regions and downstream globin promoters. We suggest that the zinc finger region of GATA-1, and related proteins, is multifunctional and mediates not only DNA binding but also important protein-protein interactions.


2005 ◽  
Vol 25 (20) ◽  
pp. 8864-8873 ◽  
Author(s):  
Nibedita Rath ◽  
Zhishan Wang ◽  
Min Min Lu ◽  
Edward E. Morrisey

ABSTRACT The activity of GATA factors is regulated, in part, at the level of protein-protein interactions. LIM domain proteins, first defined by the zinc finger motifs found in the Lin11, Isl-1, and Mec-3 proteins, act as coactivators of GATA function in both hematopoietic and cardiovascular tissues. We have identified a novel GATA-LIM interaction between GATA6 and LMCD1/dyxin. The LIM domains and cysteine-rich domains in LMCD1/dyxin and the carboxy-terminal zinc finger of GATA6 mediate this interaction. Expression of LMCD1/dyxin is remarkably similar to that of GATA6, with high-level expression observed in distal airway epithelium of the lung, vascular smooth muscle, and myocardium. In contrast to other GATA-LIM protein interactions, LMCD1/dyxin represses GATA6 activation of both lung and cardiac tissue-specific promoters. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that LMCD1/dyxin represses GATA6 function by inhibiting GATA6 DNA binding. These data reveal an interaction between GATA6 and LMCD1/dyxin and demonstrate a novel mechanism through which LIM proteins can assert their role as transcriptional cofactors of GATA proteins.


PLoS Genetics ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. e1005028 ◽  
Author(s):  
Tao Sun ◽  
Xiaowen Shi ◽  
Giulia Friso ◽  
Klaas Van Wijk ◽  
Stephane Bentolila ◽  
...  

2002 ◽  
Vol 22 (9) ◽  
pp. 3089-3102 ◽  
Author(s):  
Frédéric M. Coquelle ◽  
Michal Caspi ◽  
Fabrice P. Cordelières ◽  
Jim P. Dompierre ◽  
Denis L. Dujardin ◽  
...  

ABSTRACT CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 334
Author(s):  
Amber M. Hotto ◽  
David B. Stern ◽  
Gadi Schuster

RNA quality control is an indispensable but poorly understood process that enables organisms to distinguish functional RNAs from nonfunctional or inhibitory ones. In chloroplasts, whose gene expression activities are required for photosynthesis, retrograde signaling, and plant development, RNA quality control is of paramount importance, as transcription is relatively unregulated. The functional RNA population is distilled from this initial transcriptome by a combination of RNA-binding proteins and ribonucleases. One of the key enzymes is RNase J, a 5′→3′ exoribonuclease and an endoribonuclease that has been shown to trim 5′ RNA termini and eliminate deleterious antisense RNA. In the absence of RNase J, embryo development cannot be completed. Land plant RNase J contains a highly conserved C-terminal domain that is found in GT-1 DNA-binding transcription factors and is not present in its bacterial, archaeal, and algal counterparts. The GT-1 domain may confer specificity through DNA and/or RNA binding and/or protein–protein interactions and thus be an element in the mechanisms that identify target transcripts among diverse RNA populations. Further understanding of chloroplast RNA quality control relies on discovering how RNase J is regulated and how its specificity is imparted.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 653 ◽  
Author(s):  
Minmin Xie ◽  
Jinhao Sun ◽  
Daping Gong ◽  
Yingzhen Kong

The Cys2His2 (C2H2)-type zinc-finger protein (ZFP) family, which includes 176 members in Arabidopsis thaliana, is one of the largest families of putative transcription factors in plants. Of the Arabidopsis ZFP members, only 33 members are conserved in other eukaryotes, with 143 considered to be plant specific. C2H2-type ZFPs have been extensively studied and have been shown to play important roles in plant development and environmental stress responses by transcriptional regulation. The ethylene-responsive element binding-factor-associated amphiphilic repression (EAR) domain (GCC box) has been found to have a critical role in the tolerance response to abiotic stress. Many of the plant ZFPs containing the EAR domain, such as AZF1/2/3, ZAT7, ZAT10, and ZAT12, have been shown to function as transcriptional repressors. In this review, we mainly focus on the C1-2i subclass of C2H2 ZFPs and summarize the latest research into their roles in various stress responses. The role of C2H2-type ZFPs in response to the abiotic and biotic stress signaling network is not well explained, and amongst them, C1-2i is one of the better-characterized classifications in response to environmental stresses. These studies of the C1-2i subclass ought to furnish the basis for future studies to discover the pathways and receptors concerned in stress defense. Research has implied possible protein-protein interactions between members of C1-2i under various stresses, for which we have proposed a hypothetical model.


Sign in / Sign up

Export Citation Format

Share Document