scholarly journals USING FLY ASH AS A PARTIAL REPLACEMENT FOR FINE AGGREGATE IN CONCRETE AND ITS EFFECTS ON CONCRETE PROPERTIES UNDER DIFFERENT CURING TEMPERATURES

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Maliduwa Liyanage Chamini Surangi ◽  
Parnthep Julnipitawong ◽  
Somnuk Tangtermsirikul ◽  
Yoshifumi Ohgi ◽  
Yusuke Ishii

A shortage of natural fine aggregates has occurred worldwide, especially due to excessive consumption of them in construction activities. For this, the availability of sustainable alternative materials for natural fine aggregate is researched. Fly ash is identified as one such material that can partially replace fine aggregate in concrete. The current study demonstrates the feasibility of using fly ash as a partial fine aggregate replacing material in concrete and its effects on the compressive strength and some significant durability properties when cured under different curing temperatures. Fine aggregate and cement were partially replaced with Class F fly ash in different percentages. The curing methods (used in this study) were isothermal heat curing at 30ºC, 50ºC, and 70ºC, and one-day accelerated heat curing. The compressive strength test, carbonation depth test, rapid chloride penetration test, and surface resistivity test were performed for concrete mixtures with different fly ash replacement levels and curing temperatures. Test results reveal that the use of fly ash as a partial fine aggregate replacing material in concrete gives higher compressive strength than that of concrete with fly ash as a partial cement replacing material at both an early age and a later age. One-day accelerated curing is the most beneficial curing method, regarding the compressive strength at all the tested ages. Moreover, concrete with fine aggregate replacement gives better results for carbonation resistance, chloride penetration resistance, and surface resistivity when compared with the control mixture and mixtures with fly ash as a partial cement replacing material.

2016 ◽  
Vol 866 ◽  
pp. 3-8 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Waddah Al Hawat

Fly ash is a sustainable partial replacement of Portland cement that offers significant advantages in terms of fresh and hardened properties of concrete. This paper presents the findings of a study that aims at assessing the durability and strength properties of sustainable self-consolidating concrete (SCC) mixes in which Portland cement was partially replaced with 10%, 20%, 30%, and 40% fly ash. The study confirms that replacing Portland cement with fly ash at all of the percentages studied improves resistance of concrete to chloride penetration. The 40% fly ash mix exhibited the highest resistance to chloride penetration compared to the control mix. Despite the relative drop in compressive strength after 7 days of curing, the 28-day compressive strength of 40% SCC mix reached 55.75 MP, which is very close to the control mix. The study also confirms that adding 1%, 1.5%, and 2% basalt fibers, respectively, to the 40% fly ash mix improves the resistance to chloride penetration compared to the mix without basalt fibers.


2015 ◽  
Vol 1129 ◽  
pp. 614-620
Author(s):  
Yasutaka Sagawa ◽  
Shu Ota ◽  
Koji Harada ◽  
Takeyoshi Nishizaki ◽  
Hiroki Goda

In this study, utilization of coal fly ash with higher loss on ignition (LOI) for geopolymer mortar was investigated. The fly ash with approximately 9% of LOI was compared with Class F fly ash. Relationship between heat curing condition and strength was clarified. As the results, although compressive strength of geopolymer mortar with higher LOI was 30-50% smaller, it was available for geopolymer mortar as an alumina silicate material. The higher temperature and the longer period for initial curing, the higher strength was obtained. In order to decrease drying shrinkage, the higher temperature and the longer period for heat curing were required.


Author(s):  
Jamshed Alam

An experimental analysis was conducted to study the effects of using copper slag as a fine aggregate (FA) and the effect of fly ash as partial replacement of cement on the properties high strength concrete. In this analysis total ten concrete mixtures were prepared, out of which five mixes containing different proportions of copper slag ranging from 0% (for the control mix) to 75% were prepared and remaining five mixes containing fly ash as partial replacement of cement ranging from 6% to 30% (all mixes contains 50% copper slag as sand replacements). Concrete matrix were tested for compressive strength, tensile strength and flexural strength tests. Addition of copper slag as sand replacement up to 50% yielded comparable strength with that of the control matrix. However, further additions of copper slag, caused reduction in strength due to an increment of the free water content in the mix. Concrete mix with 75% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa at 28 days curing period, which is almost 4% more than the strength of the control mix. For this concrete containing 50% copper slag, fly ash is introduced in the concrete to achieve the better compressive, split and flexural strengths. It was also observed that, introduction of the fly ash gave better results than concrete containing 50% copper slag. When concrete prepared with 18 % of fly ash, the strength has increased approximately 4%, and strength decreased with further replacements of the cement with fly ash. Hence, it is suggested that 50% of copper slag can be used as replacement of sand and 18% fly ash can be used as replacement of cement in order to obtain high strength concrete.


2021 ◽  
Vol 11 (3) ◽  
pp. 71-88
Author(s):  
Piseth Pok ◽  
Parnthep Julnipitawong ◽  
Somnuk Tangtermsirikul

This research investigated the effects of using a substandard fly ash as a partial cement and/or fine aggregate replacement on the basic and durability properties of cement-fly mixtures. Experimental results showed that utilizing the substandard fly ash led to increase in water requirement and autoclave expansion of pastes. The strength activity indexes of the substandard fly ash passed the requirements of TIS 2135 and ASTM C618. Utilization of the substandard fly ash as cement replacement led to higher expansion of mortar bars stored in water and sodium sulfate expansion as compared to that of the OPC mixture. However, sodium sulfate resistance of mortar mixtures improved when utilizing the substandard fly ash as sand replacement material. The compressive strength of concrete at all ages was higher with the increase of the content of the substandard fly ash as sand replacement material. When the substandard fly ash was used as cement replacement material in concrete, the carbonation depth increased. On the other hand, the use of the substandard fly ash as sand replacement material decreased the carbonation depth of the concrete. Utilization of the substandard fly ash, both to replace cement and/or fine aggregate, reduced the rapid chloride penetration of the concrete.


2013 ◽  
Vol 368-370 ◽  
pp. 1061-1065 ◽  
Author(s):  
Steve W.M. Supit ◽  
Faiz U.A. Shaikh ◽  
Prabir K. Sarker

This paper evaluates the effect of Ultrafine Fly Ash (UFFA) and nanoSilica (NS) on compressive strength of high volume fly ash (HVFA) mortar at 7 days and 28 days. Three series of mortar mixes are considered in the first part of this study. In the first series the effect of high content of class F fly ash as partial replacement of cement at 40, 50 and 60% (by wt.) are considered. While in the second and third series, the UFFA and NS are used as partial replacement of cement at 5%, 8%, 10%, 12% and 15% and 1%, 2%, 4%, 6% and 8% (by wt.) of cement, respectively. The UFFA and the NS content which exhibited highest compressive strength in the above series are used in the second part where their effects on the compressive strength of HVFA mortars are evaluated. Results show that the mortar containing 10% UFFA as partial replacement of cement exhibited the highest compressive strength at both 7 and 28 days among all UFFA contents. Similarly, the mortar containing 2% NS as partial replacement of cement exhibited the best performance. Interestingly, the use of UFFA in HVFA mortars did not improve the compressive strength. However, the use of 2% and 4% NS showed improvement in the compressive strength of HVFA mortar containing 40% and 50% fly ash at both ages. The effects of NS and UFFA on the hydration and strength development of HVFA mortar is also evaluated through X-Ray Diffraction (XRD) test. Results also show that the UFFA and NS can significantly reduce the calcium hydroxide (CH) in HVFA mortars.


2019 ◽  
Vol 7 (2) ◽  
pp. 102-108
Author(s):  
Yulin Patrisia ◽  
Topan Eka Putra

This study aimed to determine the influence of peat water on the mechanical properties of the paving block (compressive strength and water absorption) using coconut shell waste and fly ash as raw material. The background of the research were the lack utilization of fly ash, preparation for the handling and utilization of fly ash from power station at Pulang Pisau and Tumbang Kajuei (under construction), and the utilization of coconut shell to be more effective and economical. Paving block specimens were immersed in peat water to determine the effect of peat water and the rest were immersed in plain water. This experiment used fly ash as a partial replacement of cement and 2% coconut shell as a partial replacement of fine aggregate. The results of the analysis showed that: (a) Paving block using fly ash and coconut shells which were immersed in plain water experienced the increase in compressive strength and the decrease in water; (b) Paving block using fly ash and coconut shells soaked in peat water showed that by the increase of age, compressive strength was decrease and water absorption was increase; (c) The compressive strength of paving block specimens immersed in plain water and peat water showed relatively similar values at 7 and 28 days age, (d). Water absorption in paving block specimens soaked both in plain water and peat water showed relatively similar values at 7 days age, but at 28 days age the specimens immersed in peat water had greater water absorption.


Sign in / Sign up

Export Citation Format

Share Document