scholarly journals INFLUENCE OF PEAT WATER ON MECHANICAL PROPERTIES OF COCONUT SHELL AND FLY ASH BASED CONCRETE

2019 ◽  
Vol 7 (2) ◽  
pp. 102-108
Author(s):  
Yulin Patrisia ◽  
Topan Eka Putra

This study aimed to determine the influence of peat water on the mechanical properties of the paving block (compressive strength and water absorption) using coconut shell waste and fly ash as raw material. The background of the research were the lack utilization of fly ash, preparation for the handling and utilization of fly ash from power station at Pulang Pisau and Tumbang Kajuei (under construction), and the utilization of coconut shell to be more effective and economical. Paving block specimens were immersed in peat water to determine the effect of peat water and the rest were immersed in plain water. This experiment used fly ash as a partial replacement of cement and 2% coconut shell as a partial replacement of fine aggregate. The results of the analysis showed that: (a) Paving block using fly ash and coconut shells which were immersed in plain water experienced the increase in compressive strength and the decrease in water; (b) Paving block using fly ash and coconut shells soaked in peat water showed that by the increase of age, compressive strength was decrease and water absorption was increase; (c) The compressive strength of paving block specimens immersed in plain water and peat water showed relatively similar values at 7 and 28 days age, (d). Water absorption in paving block specimens soaked both in plain water and peat water showed relatively similar values at 7 days age, but at 28 days age the specimens immersed in peat water had greater water absorption.

Author(s):  
Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.


2016 ◽  
Vol 865 ◽  
pp. 201-205 ◽  
Author(s):  
Michaela Fiedlerová ◽  
Rostislav Drochytka ◽  
Pavel Dohnálek

This paper deals with the evaluation of a partial replacement of cement by Czech fly ash in high strength floor screed in dosage of 10, 20, 30 and 40% and the assessment of the physical-mechanical properties such as compressive strength, water absorption and bulk density. Used fly ashes are from power plants Počerady, Opatovice and Tušimice. The experimental study showed that the use of Czech fly ash improves the compressive strength. The bulk density decreases and therefore water absorption increases. Reference samples become clearly the lowest compressive strength at age of 28 days (fc28). A significant increase in compressive strength (fc28) was observed in case of mix design with addition of 10% and 20% of fly ash Tušimice (10%ETU, 20%ETU) and 20% and 30% of fly ash Počerady (20%EPC, 30%EPC). The addition of 20% of fly ash Počerady (20%EPC) has noticeable influence on short-term compressive strength (measured at the age of 24 hours).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 488
Author(s):  
Sylvia Kelechi ◽  
Musa Adamu ◽  
Abubakar Mohammed ◽  
Yasser Ibrahim ◽  
Ifeyinwa Obianyo

Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.


2021 ◽  
Vol 880 (1) ◽  
pp. 012042
Author(s):  
Z A Rahman ◽  
A S M Suhaimi ◽  
W M R Idris ◽  
T Lihan

Abstract Demand for water and energy supply has dramatically increased the amount of drinking water sludge (DW) and fly ash (FA) annually. These wastes should be properly managed and disposed to protect any potential contamination to surrounding ecosystem. Both by-products can be potentially recycled as raw material for brick development. This study aimed to examine the influence of fly ash content on mechanical properties of drinking water sludge brick at low firing temperature of 500°C. Different ratios of FA content were added to the DWS ranged between 0 and 45%. Brick sample was moulded in 215 mm x 102.5 mm x 65 mm dimension. Samples were air-dried prior to firing at 500°C for 3 hours in a furnace. Basic characterization of DW and FA showed pH of 5.76 and 10.1 with organic contents of 8.42% and 1.14%, respectively. Clay and silt fractions were dominant in DWS while silt more apparent than sand and clay in FA. The volume changes and water absorption of the brick samples decreased with increasing FA content. For the water absorption of the brick increased back as 40% of FA content. The density and compressive strength dropped with the increasing amount of FA. The compressive strength of brick experienced with sulphate attack also decreased with increasing FA content. The results suggested that further study are needed to improve the compressive strength of the studied bricks.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


2011 ◽  
Vol 250-253 ◽  
pp. 307-312 ◽  
Author(s):  
Muthuramalingam Jayakumar ◽  
M. Salman Abdullahi

Even though the use of fly ash in concrete is nowadays a common practice, its relatively slow pozzolanic reactivity hinders its greater utilization; hence efficient methods of activation are on demand. This study was carried out to evaluate the influence of lime as a chemical activator on the mechanical and durability properties of high strength fly ash concrete. Mixtures were made with 0, 30, 40, and 50% of cement replaced by low calcium fly ash. Corresponding mixtures were also made with the same amount of fly ash and addition of 10% of lime to each mixture. For each concrete mixture, slump, compressive strength, water absorption, sorptivity, apparent volume of permeable voids, and resistance to chloride-ion penetration were measured. The results obtained showed that addition of lime improved the compressive strength significantly at all ages. The strength of all the fly ash mixtures containing lime surpassed that of the corresponding Portland cement mix at 60 days. Addition of lime also improved the sorptivity and resistance to chloride-ion penetration of the fly ash concrete. It however increases the water absorption and the volume of permeable voids of the fly ash concrete.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


Sign in / Sign up

Export Citation Format

Share Document