Effect of Supercritical Carbon Dioxide Flow Rate on Extraction Yield, Antioxidant Properties and Morphological Changes of Quercus infectoria Galls

2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Hasmida Mohd Nasir ◽  
Liza Md Salleh ◽  
Mohd Azizi Che Yunus

The extraction condition of supercritical carbon dioxide (SC-CO2) extraction was used to extract Quercus infectoria galls, a medicinal plant which rich with bioactive compound, in order to maintain the green environment as well as the quality of the product. The study was performed to investigate the effect of extraction parameter (CO2 flow rate) on Quercus infectoria galls extract using SC-CO2 extraction. Then, the extract was analysed to determine their antioxidant activity and morphological changes of the Quercus infectoria galls before and after the extraction. Hence, three different CO2 flow rate have been investigated which were 2, 3, and 4 mL/min while pressure (P) and temperature (T) were fixed at highest density (P: 30 MPa, T: 40oC). The results obtained from this study showed the solvent flow rate of 2 mL/min give the highest percentage of extraction yield which is 0.37% compared to others. The extracts were screened for possible antioxidant activity by antioxidant activity 2,2-diphenyl-1-picryl hydrazyl (DPPH) assays. In this study, the best result obtained was at flow rate of 3 mL/min with inhibition percentage of 96.97% but it showed insignificant difference with other CO2 flow rates. The change in morphology of the galls was significant when observed using scanning electron microscope (SEM).  These results indicated that SC-CO2 extraction could be an alternative method for extraction of antioxidative compound from Q.infectoria galls.  

2014 ◽  
Vol 67 (2) ◽  
Author(s):  
Liza Md Salleh ◽  
Hasmida Mohd Nasir ◽  
Harisun Yaakob ◽  
Mohd Azizi Che Yunus

Currently, finding alternative ways of extracting medicinal plant gain more interest from the researchers.  Quercus infectoria, a medicinal plant, is rich with bioactive compound being extracted using supercritical carbon dioxide (SC-CO2) extraction which helps to maintain the quality of the product as well as green environment. CO2 is widely used as solvent due to moderate critical conditions, nontoxic and easily removed from the products. This work was performed to determine the optimum extraction parameters of SC-CO2 extraction and their effects on the total phenolic content and antioxidant activity of Q.infectoria extract. Hence, two different parameters have been investigated which were extraction time and CO2 flow rate (2, 3, 4 ml/min) while pressure (P) and temperature (T) were fixed at highest density (P = 30 MPa, T = 40oC). The results obtained from this study show that the solvent flow rate of 2 ml/min gives the highest percentage of yield (0.3652%) and the complete extraction of the sample was achieved at 80 minutes. Better quality of the extract was shown at 2 ml/min as resulted in high amount of phenolic compound in the extract presented as gallic acid equivalent (GAE) (2.04×102 mg GAE/g sample). The extracts were screened for possible antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging assays. In this study, the best result obtained for antioxidant activity was at flow rate of 3 ml/min with inhibition percentage of 96.97%.


2005 ◽  
Vol 48 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Ana Cristina Atti-Santos ◽  
Marcelo Rossato ◽  
Luciana Atti Serafini ◽  
Eduardo Cassel ◽  
Patrick Moyna

In this work lime essential oils were extracted by hydrodistillation and supercritical carbon dioxide. In the case of hydrodistillation, the parameters evaluated were extraction time and characteristics of the plant material. In supercritical extraction, the parameters evaluated were temperature, pressure, CO2 flow, extraction time and material characteristics. Considering citral content, the best results for hydrodistillation were obtained with a distillation time of 3 hours using whole peels. The best results for supercritical extraction were found using 60ºC, 90 bar, at a CO2 flow rate of 1 mL/ min for 30 minutes using milled peels. The best yields of lime oil were obtained by hydrodistillation (5.45% w/w) and supercritical extraction (7.93% w/w) for milled peels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supriya Priyadarsani ◽  
Avinash Singh Patel ◽  
Abhijit Kar ◽  
Sukanta Dash

AbstractIn this study, an underutilized citrus family fruit named grapefruit was explored for the extraction of lycopene using supercritical carbon dioxide (CO2) extraction technique. An experimental design was developed using response surface methodology to investigate the effect of supercritical carbon dioxide (CO2) operating parameter viz., pressure, temperature, CO2 flow rate, and extraction time on the extraction yield of lycopene yield from grapefruit. A total of 30 sets of experiments were conducted with six central points. The statistical model indicated that extraction pressure and extraction time individually, and their interaction, significantly affected the lycopene yield. The central composite design showed that the polynomial regression models developed were in agreement with the experimental results, with R2 of 0.9885. The optimum conditions for extraction of lycopene from grapefruit were 305 bar pressure, 35 g/min CO2 flow rate, 135 min of extraction time, and 70 °C temperature.


Author(s):  
RINALDI SALEA ◽  
ERWAN Y. DARUSSALAM ◽  
STEVANUS HIENDRAWAN ◽  
BAMBANG VERIANSYAH ◽  
RAYMOND R. TJANDRAWINATA

Objective: Extraction of Curcuma mangga (C. mangga) using supercritical carbon dioxide (SC-CO2) was investigated to provide information about the optimum extraction condition. Methods: A Taguchi method with L9 orthogonal array design was used to determine the optimum extraction conditions. Effects of extraction pressure, temperature, CO2 flow rate and dynamic extraction time on C. mangga oil yield were investigated at levels ranging between 150-350 bar, 40-60 °C, 10-20 g/min and 120-240 min, respectively. Results: The highest C. mangga oil yield (5.223%) from SC-CO2 extraction was obtained at a pressure of 350 bar, temperature of 60 °C, CO2 flow rate of 20 g/min and dynamic extraction time of 240 min. The experimental C. mangga oil yield at optimum condition was in a good agreement with the values predicted by computational process using Taguchi method. Based on S/N ratio calculation, the most influencing parameters in maximizing C. mangga oil yield is extraction temperature, followed by extraction pressure, dynamic extraction time and CO2 flow rate. Conclusion: In this study, Taguchi method was successfully applied to optimize SC-CO2 extraction of C. mangga. Taguchi method was able to simplify the experimental procedure of SC-CO2 extraction.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 782 ◽  
Author(s):  
Antonio Molino ◽  
Vincenzo Larocca ◽  
Giuseppe Di Sanzo ◽  
Maria Martino ◽  
Patrizia Casella ◽  
...  

Microalgae Dunaliella salina contains useful molecules such as β-carotene and fatty acids (FAs), which are considered high value-added compounds. To extract these molecules, supercritical carbon dioxide was used at different operative conditions. The effects of mechanical pre-treatment (grinding speed at 0–600 rpm; pre-treatment time of 2.5–7.5 min) and operating parameters for extraction, such as biomass loading (2.45 and 7.53 g), pressure (100–550 bars), temperature (50–75 °C) and CO2 flow rate (7.24 and 14.48 g/min) by varying the extraction times (30–110 min) were evaluated. Results showed that the maximum cumulative recovery (25.48%) of β-carotene was achieved at 400 bars and 65 °C with a CO2 flow rate of 14.48 g/min, while the highest purity for stage (55.40%) was attained at 550 bars and 65 °C with a CO2 flow rate of 14.48 g/min. The maximum recovery of FAs, equal to 8.47 mg/g, was achieved at 550 bars and 75 °C with a CO2 flow rate of 14.48 g/min. Moreover, the lowest biomass loading (2.45 g) and the first extraction cycle (30 min) allowed the maximum extraction of β-carotene and FAs.


Author(s):  
Maria Cristina Macawile ◽  
Joseph Auresenia

This study was conducted to optimize the supercritical carbon dioxide (scCO2) extraction of oil from Gliricidia sepium seeds using response surface methodology. Initial experiments were carried out using scCO2 and scCO2 with co-solvent n-hexane to determine the effect of co-solvent addition in oil yield. In order to obtain the maximum yield, experiments were conducted using Response Surface Methodology - Face Centered Central Composite Design (RSM – FCCD) under the following conditions: pressure of 20, 30, and 40 MPa, temperature of 50, 60, and 70°C, and CO2 flow rate of 2, 2.5, and 3 mL/min. A second-order polynomial with extended cubic interaction model was significantly fitted (p < 0.05), and a high coefficient determination value (R2 = 0.98) was recorded. At a constant extraction time of 60 minutes, the best extraction yield (12.12%) was obtained at 60°C, 40 MPa, and 2.5 mL/min. The pressure, temperature, and CO2 flow rate were all found to have a significant effect on the oil yield. The oil was used in biodiesel production and its methyl ester composition was analyzed using Gas Chromatography-Flame Ionization Detector (GC-FID).


Author(s):  
Shun-shan Jiao ◽  
Dong Li ◽  
Zhi-gang Huang ◽  
Zhen-shan Zhang ◽  
Bhesh Bhandari ◽  
...  

The optimal conditions for the supercritical carbon dioxide (SC-CO2) extraction of flaxseed oil from flaxseed were determined using response surface methodology (RSM). A second-order regression for rotation-orthogonal composite design was used to study the effects of three independent variables: extraction pressure (MPa), extraction temperature (oC) and CO2 flow rate (L/h) on the yield of flaxseed oil. The independent variables were coded at five levels and their actual values selected on the basis of preliminary experiments. The results indicated that the yield of flaxseed oil was beyond 29% at a probability of 95% in the range of extraction pressure: 38.6-42.3 MPa, extraction temperature: 52.3-57.0 oC, and CO2 flow rate: 27.8-31.2 L/h. The optimal extraction conditions were extraction pressure of 41 MPa, extraction temperature of 56 oC and CO2 flow rate of 31 L/h according to the analysis of response surface. In this condition, the experimental yield of flaxseed oil was 29.96%, which was close to the predicted value of 30.52%.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Sign in / Sign up

Export Citation Format

Share Document