PERFORMANCE AND EMISSION EVALUATION OF CASTOR BLENDS BIODIESEL IN SINGLE CYLINDER DIESEL ENGINE DYNAMOMETER

2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Mohd Zaini Jamaludin ◽  
Safarudin Gazali Herawan ◽  
Yusmady Mohamed Arifin

This study presents a preliminary investigation of engine is running on petro-diesel in order to determine the engine’s operating characteristics and exhaust emission levels, constituting the base line that is compared with corresponding cases when using second generation biodiesel that used castor biodiesel consists of 5%, 10% and 20% blends. The engine coupled to hydraulic dynamometer through belting connection for load measurement. The same method will be repeated for each fuel blend by keeping the same operating condition. The present studies contribute as an alternative fuel by using biodiesel fuels from non-edible for diesel engines with standard engine parts.

Author(s):  
Mohamad Rifal ◽  
Nazarudin Sinaga

Methanol (CH3OH) is the one of an alternative fuel for SI engine. Methanol has a similiar charakteristic and fisik properties to gasoline. This study using methanol-gasoline fuel blend (M10, M20 and M40). The aim of this study was to determine the effect of using methanol-gasoline fuel blend of  fuel consumption, exhaust emission, power and torque. In the experiment,  an engine three-cylidre 12 valve with tecnology DOHC Mivec and ECI MPI injection System 1193 cc was used. With a little modification that is using methanol controler to maximize the result of research. The experimental result showed that the fuel consumption decrease with the use of methanol-gasoline ful blend. Each of these reductions in fuel consumption for the M10, M20 and M40 are 1 %, 3% dan 3%. The Power and Torque is increas while using fuel blend than gasoline and it also decrease exhaust emission


Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


2014 ◽  
Vol 18 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Hasan Yamik

Biodiesel is an alternative fuel for diesel engines which doesn?t contain pollutants and sulfur; on the contrary it contains oxygen. In addition, both physical and chemical properties of sunflower oil methyl ester (SME) are identical to diesel fuel. Conversely, diesel and biodiesel fuels are widely used with some additives to reduce viscosity, increase the amount of cetane, and improve combustion efficiency. This study uses diesel fuel, SME and its mixture with aviation fuel JetA-1 which are widely used in the aviation industry. . Fuel mixtures were used in 1-cylinder, 4-stroke diesel engine under full load and variable engine speeds. In this experiment, engine performance and emission level are investigated. As a conclusion, as the JetA-1 ratio increases in the mixture, lower nitrogen oxide (NOx) emission is measured. Also, specific fuel consumption is lowered.


2013 ◽  
Vol 774-776 ◽  
pp. 784-790
Author(s):  
S.M. Palash ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
B.M. Masum

To meet stringent exhaust emission norms worldwide, various exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Using antioxidant additives in biodiesel fuels is a promising and effective NOx reduction technology. Non-edible jatropha oil based methyl ester was produced and blended with conventional diesel. Five fuel samples (Diesel, JB5, JB5DPPD0.15%, JB15 and JB15DPPD0.15%) were tested for their use as substitute fuel for a radiator-cooled four cylinder diesel engine. Experiment results show that DPPD antioxidant additive could be reduced NOx emission significantly with slight penalty on engine performance as well as CO and HC emission. However, when compared to diesel combustion the emissions of HC and CO were found nearly same or below. By addition of 0.15% (m) DPPD additive in JB5 and JB15 reduction of NOx emission were 12.68% and 13.36 % compared to biodiesel blends without additive at full throttle position. As conclusion, JB5 and JB15 with addition of 0.15% (m) can be used in four cylinder diesel engine to reduce NOx and consequently overcome the barrier to market expansion of biodiesel fuels.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Author(s):  
Fatima Mohammed Ghanim ◽  
Ali Mohammed Hamdan Adam ◽  
Hazir Farouk

Abstract: There is growing interest to study the effect of blending various oxygenated additives with diesel or biodiesel fuel on engine performance and emission characteristics. This study aims to analyze the performance and exhaust emission of a four-stroke, four-cylinder diesel engine fueled with biodiesel-ethanol-diesel. Biodiesel was first produced from crude Jatropha oil, and then it was blended with ethanol and fossil diesel in different blend ratios (B10E10D80, B12.5E12.5D75, B15E15D70, B20E20D60 and B25E25D50). The engine performance and emission characteristics were studied at engine speeds ranging from 1200 to 2000 rpm. The results show that the brake specific fuel consumption increases while the brake power decreases as the percentage of biodiesel and ethanol increases in the blend. The exhaust emission analysis shows a reduction in CO2 emission and increase in NOx emission when the biodiesel -to- ethanol ratio increases in the blends, when compared with diesel as a reference fuel.


2021 ◽  
Vol 11 (23) ◽  
pp. 11502
Author(s):  
Jun Cong Ge ◽  
Sam Ki Yoon ◽  
Jun Hee Song

Vegetable oil as an alternative fuel for diesel engine has attracted much attention all over the world, and it is also expected to achieve the goal of global carbon neutrality in the future. Although the product after transesterification, biodiesel, can greatly reduce the viscosity compared with vegetable oil, the high production cost is one of the reasons for restricting its extensive development. In addition, based on the current research on biodiesel in diesel engines, it has been almost thoroughly investigated. Therefore, in this study, crude palm oil (CPO) was directly used as an alternative fuel to be blended with commercial diesel. The combustion, engine performance and emissions were investigated on a 4-cylinder, turbocharged, common rail direct injection (CRDI) diesel engine fueled with different diesel-CPO blends according to various engine loads. The results show that adding CPO to diesel reduces the maximum in-cylinder pressure and maximum heat release rate to 30 Nm and 60 Nm. The most noteworthy finding is that the blend fuels reduce the emissions of hydrocarbons (HC), nitrogen oxides (NOx) and smoke, simultaneously. On the whole, diesel fuel blended with 30% CPO by volume is the best mixing ratio based on engine performance and emission characteristics.


Author(s):  
Bobbili Prasadarao ◽  
Aditya Kolakoti ◽  
Pudi Sekhar

: This paper presents the production of biodiesel from three different non edible oils of Pongamia, Mahua and Jatropha as an alternative fuel for diesel engine. Biodiesel is produced by followed transesterification process, using catalyst sodium hydroxide (NaOH) and methyl alcohol (CH3OH). A single cylinder four stroke three-wheeler auto diesel engine is used to evaluate the exhaust emission characteristics at a constant speed of 1500rpm with varying loads. Diesel as a reference fuel and cent percent of Pongamia Methyl Ester (PME), Mahua Methyl Ester (MME) and Jatropha Methyl Ester (JME) are used as an alternative fuel. The physicochemical properties of biodiesels are within the limits of international standards (ASTM D6751) noticeably. The results of tested biodiesels offer low exhaust emissions compared to diesel fuel, owing to presence of molecular oxygen and high cetane number. At maximum load the NOx emission reduced by 18.41% for JME, 17.46% for MME and 7.61% for PME. Low levels of CO emissions are recorded for JME (66%) followed by MME (33%) and PME (22%). Unburnt hydrocarbon emissions were reduced by 85.75% for JME and MME, for PME 14.28% reduction is observed. Exhaust smoke emissions are also reduced for PME and MME by 18.84%, for JME 14.49%. As a conclusion, it is observed that all the methyl esters exhibit significant reduction in harmful exhaust emissions compared to diesel fuel and JME is noted as a better choice.


Sign in / Sign up

Export Citation Format

Share Document