scholarly journals Kaji Eksperimental Rasio Metanol-Bensin Terhadap Konsumsi Bahan Bakar, Emisi Gas Buang, Torsi Dan Daya

Author(s):  
Mohamad Rifal ◽  
Nazarudin Sinaga

Methanol (CH3OH) is the one of an alternative fuel for SI engine. Methanol has a similiar charakteristic and fisik properties to gasoline. This study using methanol-gasoline fuel blend (M10, M20 and M40). The aim of this study was to determine the effect of using methanol-gasoline fuel blend of  fuel consumption, exhaust emission, power and torque. In the experiment,  an engine three-cylidre 12 valve with tecnology DOHC Mivec and ECI MPI injection System 1193 cc was used. With a little modification that is using methanol controler to maximize the result of research. The experimental result showed that the fuel consumption decrease with the use of methanol-gasoline ful blend. Each of these reductions in fuel consumption for the M10, M20 and M40 are 1 %, 3% dan 3%. The Power and Torque is increas while using fuel blend than gasoline and it also decrease exhaust emission

Author(s):  
Simeon Iliev

The aim of this study is to develop the one-dimensional model of a four-cylinder, four-stroke, multi-point injection system SI engine and a direct injection system SI engine for predicting the effect of various fuel types on engine performances, specific fuel consumption, and emissions. Commercial software AVL BOOST was used to examine the engine characteristics for different blends of methanol and gasoline (by volume: 5% methanol [M5], 10% methanol [M10], 20% methanol [M20], 30% methanol [M30], and 50% methanol [M50]). The methanol-gasoline fuel blend results were compared to those of net gasoline fuel. The obtained results show that when methanol-gasoline fuel blends were used, engine performance such as power and torque increases and the brake-specific fuel consumption increases with increasing methanol percentage in the blended fuel.


Transport ◽  
2004 ◽  
Vol 19 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Algis Butkus ◽  
Saugirdas Pukalskas

Looking forward to Lithuania becoming a member of the EU it is very important to use a larger amount of renewing fuel. Based on economic and environmental considerations in Lithuania, we are interested in studying the effects of ethanol contents in the blended ethanol‐petrol fuel on the engine performance and pollutant emission of SI engine. Therefore, we used engine test facilities to investigate the effects on the engine performance and pollutant emission of 3,5 % and 7,0 % ethanol in the fuel blend and special additives, which reduce emissions and increase octane rating. The tests were carried out in the laboratory on a chassis dynamometer with two different cars. The experiment results showed that ethanol used in a fuel blend with petrol had a positive influence on engine performance and exhaust emission.


2018 ◽  
Vol 12 (4) ◽  
pp. 4044-4055
Author(s):  
S. Srihari ◽  
D. Sanjay Kumar ◽  
Thirumalini S

In this study the performance and emission characteristics of spark ignition genset engine fueled with gasoline and diethyl ether (DEE) blends are carried out. The DEE blends are varied from 3%, 6% and 9% by volume in gasoline. A four-stroke single cylinder constant speed spark ignition engine is used for the experiments. The variation in fuel consumption and exhaust emission with respect to two different inlet air temperatures are studied. The concentration of exhaust emissions such as HC, CO, NOx is observed. The parameters such as inlet air temperature, brake specific fuel consumption, relative air to fuel ratio are also measured. It is noticed that 6% DEE blend in gasoline reduced almost reduced HC emission about 57% and also considerable reduction in CO emission at lower air intake temperature. The addition of diethyl ether has an improvement in performance and significant reduction in HC, CO and NOx emissions.


2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Mohd Zaini Jamaludin ◽  
Safarudin Gazali Herawan ◽  
Yusmady Mohamed Arifin

This study presents a preliminary investigation of engine is running on petro-diesel in order to determine the engine’s operating characteristics and exhaust emission levels, constituting the base line that is compared with corresponding cases when using second generation biodiesel that used castor biodiesel consists of 5%, 10% and 20% blends. The engine coupled to hydraulic dynamometer through belting connection for load measurement. The same method will be repeated for each fuel blend by keeping the same operating condition. The present studies contribute as an alternative fuel by using biodiesel fuels from non-edible for diesel engines with standard engine parts.


2017 ◽  
Vol 867 ◽  
pp. 261-271
Author(s):  
Shanmugasundaram Sankar ◽  
V. Kumaresan Manivarma ◽  
Arun Thampi

In this study a high viscous liquid fuel, approximately 20 times more than that of diesel, produced from non- edible oil seed jatropha curcaswhich has been considered as an alternative fuel for the compression ignition engine is reduced through trans-esterification process. During this process, the raw jatropha curcas oil is preheated to 60°C and treated with methanol 20% by volume along with potassium hydroxide (KOH) by 0.568% of the oil weight as alkaline catalyst at 60°C reaction temp to produce Methyl Esters of Jatropha Oil (JOME). Similarly, the above method is followed to produce Ethyl Esters of Jatropha Oil (JOEE) with preheating at 70°C. In addition, 2% glycerol is added to the mixture to improve the reaction rate. The lower viscous fuel biodiesel (JOME and JOEE) produced by trans-esterifying of jatropha oil is blended with pure diesel 50% by volume. An experimental investigation have been carried out without altering the CI engine to examine the performance parameters in terms of brake thermal efficiency, total fuel consumption and brake specific fuel consumption for several engine load from 0 Kg to 8 Kg. The study also includes, separation of crude biodiesel from glycerol, washing of crude biodiesel, examination of calorific value using bomb calorimeter, viscosity measurement using redwood and brookfield viscometer, engine emission test and cost comparison for production of one litre of JOME and JOEE. It is inferred from the above study that the blends of JOME with diesel have closer performance to diesel when compared to the blend of JOEE with diesel. But, on comparison of their exhaust emission, the JOEE showed reasonable lower exhaust emission CO and NOx in spite of its higher calorific value when compared with JOME. The study also revealed that the biodiesel can be adopted as an alternative fuel for existing diesel engine without any modification.


2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


2003 ◽  
Author(s):  
Liguang Li ◽  
Zhimin Liu ◽  
Huiping Wang ◽  
Baoqing Deng ◽  
Zhensuo Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (12) ◽  
pp. 5646
Author(s):  
Cheng-Wei Hung ◽  
Ying-Kuan Tsai ◽  
Tai-An Chen ◽  
Hsin-Hung Lai ◽  
Pin-Wen Wu

This study used experimental and numerical simulation methods to discuss the attenuation mechanism of a blast inside a tunnel for different forms of a tunnel pressure reduction module under the condition of a tunnel near-field explosion. In terms of the experiment, a small-scale model was used for the explosion experiments of a tunnel pressure reduction module (expansion chamber, one-pressure relief orifice plate, double-pressure relief orifice plate). In the numerical simulation, the pressure transfer effect was evaluated using the ALE fluid–solid coupling and mapping technique. The findings showed that the pressure attenuation model changed the tunnel section to diffuse, reduce, or detour the pressure transfer, indicating the blast attenuation effect. In terms of the effect of blast attenuation, the double-pressure relief orifice plate was better than the one-pressure relief orifice plate, and the single-pressure relief orifice plate was better than the expansion chamber. The expansion chamber attenuated the blast by 30%, the one-pressure relief orifice plate attenuated the blast by 51%, and the double-pressure relief orifice plate attenuated the blast by 82%. The blast attenuation trend of the numerical simulation result generally matched that of the experimental result. The results of this study can provide a reference for future protective designs and reinforce the U.S. Force regulations.


Sign in / Sign up

Export Citation Format

Share Document