STUDY OF WOUND HEALING IN RATS TREATED WITH SKIN OF POISONOUS FROG, ODORRANA HOSII

2015 ◽  
Vol 77 (25) ◽  
Author(s):  
Nur Amirah Md Sungif ◽  
Ramlah Zainudin ◽  
Dayangku Norlida Awang Ojep ◽  
Ahmad Hata Rasit

A grafting techniques or using various synthetic and biological dressing also widely used to protect the wound area. There are 8 peptides with differential antimicrobial activities contained in Odorrana hosii’s skin secretion. However, to our best knowledge no study has been scientifically conducted to reveal the value off this species on wound healing. Primarily, the aim of this study was to look at the potential use of O. hosii’s skin as a biological dressing in wound healing management. This study assessed the wound healing in rat compared between wound grafted with O. hosii’s skin and wound treated with normal saline dressing. Histological examination was done to assess the wound healing activities after 14 days. The result shown, both wounds which were treated with O. hosii’s skin and untreated wound heal completely on day 14 as the epidermis and dermis completely close. Histologically, the percentage of neutrophils, macrophages and fibroblasts, were reduced on day 14. However, wounded skin, which was treated with O. hosii’s skin, had better healing quality as more new tissues and hair follicle regrowth compared with the untreated wound. It is suggested that poison gland in the O. hosii’s skin did not harm the wounded rat skin, instead, poison that act as defensive mechanism can help the species to fight the pathogen on the wound.

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36421 ◽  
Author(s):  
Eduardo Martínez-Martínez ◽  
Claudio I. Galván-Hernández ◽  
Brenda Toscano-Márquez ◽  
Gabriel Gutiérrez-Ospina

Author(s):  
Emil Aamar ◽  
Efrat Avigad Laron ◽  
Wisal Asaad ◽  
Sarina Harshuk-Shabso ◽  
David Enshell-Seijffers

2021 ◽  
Vol 26 ◽  
pp. 2515690X2098676
Author(s):  
Ana Bertha Hernandez-Hernandez ◽  
Francisco Javier Alarcon-Aguilar ◽  
Mario Garcia-Lorenzana ◽  
Marco Aurelio Rodriguez-Monroy ◽  
Maria Margarita Canales-Martinez

Jatropha neopauciflora is an endemic species of Mexico. Its latex is used to treat wounds, scarring, oral infections, and loose teeth. To date, there are no studies that validate at a morphological level a wound-healing use in diabetes. The present research aimed to evaluate the wound-healing capacity of the latex of J. neopauciflora in the skin of healthy and streptozotocin-induced diabetic mice. Also, a chemical analysis of the latex through molecular exclusion chromatography and HPLC were performed. Male mice ( Mus musculus) of 7-week-old CD1 strain were used. Groups of healthy and diabetic mice were formed. A longitudinal cut of 1 cm was performed on the depilated skin. All treatments were topically applied to the wound area twice a day for ten days. At the end of the experiments, the skin sections were obtained from the wound area and stained with Hematoxylin-Eosin. Then we counted the number of active fibroblasts in all the experimental groups. In normal mice, the latex accelerated the wound-healing process and decreased the number of active fibroblasts, similarly to Recoveron. In diabetic mice, the latex and Recoveron increased the number of active fibroblasts. In normal and diabetic mice, a thin and orderly epidermis was observed. Molecular exclusion chromatography exhibited 58 fractions, 14 of which were subjected to HPLC, to detect catechin, a flavonoid with antioxidant, antimicrobial, and anti-inflammatory properties. J. neopauciflora latex can be useful for wound treatment in patients with diabetes mellitus because it accelerates and promotes the wound-healing process.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Clare Y. L. Chao ◽  
Gabriel Y. F. Ng ◽  
Kwok-Kuen Cheung ◽  
Yong-Ping Zheng ◽  
Li-Ke Wang ◽  
...  

An evaluation of wound mechanics is crucial in reflecting the wound healing status. The present study examined the biomechanical properties of healing rat skin wounds in vivo and ex vivo. Thirty male Sprague-Dawley rats, each with a 6 mm full-thickness circular punch biopsied wound at both posterior hind limbs were used. The mechanical stiffness at both the central and margins of the wound was measured repeatedly in five rats over the same wound sites to monitor the longitudinal changes over time of before wounding, and on days 0, 3, 7, 10, 14, and 21 after wounding in vivo by using an optical coherence tomography-based air-jet indentation system. Five rats were euthanized at each time point, and the biomechanical properties of the wound tissues were assessed ex vivo using a tensiometer. At the central wound bed region, the stiffness measured by the air-jet system increased significantly from day 0 (17.2%), peaked at day 7 (208.3%), and then decreased progressively until day 21 (40.2%) as compared with baseline prewounding status. The biomechanical parameters of the skin wound samples measured by the tensiometer showed a marked reduction upon wounding, then increased with time (all p < 0.05). On day 21, the ultimate tensile strength of the skin wound tissue approached 50% of the normal skin; while the stiffness of tissue recovered at a faster rate, reaching 97% of its prewounded state. Our results suggested that it took less time for healing wound tissues to recover their stiffness than their maximal strength in rat skin. The stiffness of wound tissues measured by air-jet could be an indicator for monitoring wound healing and contraction.


2021 ◽  
Vol 30 (5) ◽  
pp. S6-S10
Author(s):  
Aby Mitchell ◽  
Doris Llumigusin

Wound healing follows a process of four distinct phases: haemostasis, inflammation, proliferation and maturation. Problems can arise in any of these phases, delaying the wound process. Hypergranulation (also known as overgranulation) during the proliferation phase occurs when granulation tissue over grows beyond the wound surface. Such wounds have a discoloured, raised or swollen appearance and bleed easily. The cause may be infection, the effects of friction on the wound area, nutritional deficit or stress. Treatments will depend on the cause. There is a lack of studies on treatments for hypergranulaton and more research is required.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Jack Route

Background Previous study indicates that pharmacologic antithrombotic therapy may be an inhibitory factor for wound healing and should merit consideration among the other core factors in wound healing optimization. Methods This study provides a retrospective analysis of the effect of antithrombotic therapy on wound healing rates of uncomplicated diabetic foot ulcerations. Wounds treated with standard of care in the presence of clinical anticoagulation were compared to control wounds. Results The results indicate a statistically significant negative correlation between antithrombotic therapy and diabetic foot wound healing rate. This represents the first study focusing on this correlation in the uncomplicated diabetic foot wound. Conclusions This retrospective study demonstrates that antithrombotic therapy has a statistically significant negative effect on healing rates of uncomplicated diabetic foot ulcerations. Both wound area and depth improvement over 4 weeks was significantly better in treated patients who were not on antithrombotic therapy for comorbidity not associated with peripheral arterial disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kanae Mukai ◽  
Yukari Nakajima ◽  
Tamae Urai ◽  
Emi Komatsu ◽  
Kana Takata ◽  
...  

Estrogen replacement promotes cutaneous wound healing in 8–10-week young ovariectomized female mice. However, research using aged ovariectomized female mice has not been reported, to the best of our knowledge. Therefore, we investigated the effect of 17β-estradiol on cutaneous wound healing using 24-week middle-aged ovariectomized female mice. Twenty-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX), and sham (SHAM). After 4 weeks, the mice received two full-thickness wounds. Then, the OVX + 17β-estradiol group was administered 17β-estradiol at 0.01 g/day until healing. The ratio of wound area in the OVX + 17β-estradiol group was significantly decreased compared with that in the OVX group. The numbers of neutrophils and macrophages in the OVX + 17β-estradiol group were significantly smaller than those in the OVX group. In addition, the ratio of myofibroblasts in the OVX + 17β-estradiol group was significantly higher than that in the OVX group. These data suggested that exogenous continuous 17β-estradiol administration promotes cutaneous wound healing in 24-week OVX female mice by reducing wound area, shortening inflammatory response, and promoting wound contraction. However, it is unclear whether the effect of exogenous estrogen on wound healing outweighs the delay of wound healing due to advanced age.


Author(s):  
Mokhamad Tirono ◽  
Farid Samsu Hananto ◽  
Ahmad Abtokhi

Background: Treatment of wounds in diabetes often gets less than perfect healing. One of the reasons for the difficulty in treating wounds in diabetes is the growth of aerobic and anaerobic bacteria. This study aims to determine the pulse voltage and treatment time that can optimally inactivate bacteria, and their effect on wound healing in mice suffering from diabetes. Methods: The study used electrical stimulation with a direct voltage of 10 volts given a pulse voltage of 50-80 volts, a width of 50 µs, and the number of pulses of 65 per second. The research samples were Staphylococcus aureus (S. aureus) and Pseudo-monas aeruginosa (P. aeruginosa) bacteria that grew on beef and mice (Mus musculus) with diabetes. The treatment for S. aureus and P. aeruginosa bacteria was carried out using a pulse voltage of 50-80 volts for 5-15 min/day and repeated for 3 days. Meanwhile, treatment of mice wounds was carried out with a pulse voltage of 80 volts for 15 min/day and repeated for 7 days. Results: The results showed that treatment with a pulse voltage of 50-80 volts and a treatment time of 5-15 min significantly reduced the number of S. aureus and P. aeruginosa bacteria in beef (p£0.05). Treatment with a pulse voltage of 80 volts for 15 min made beef free from bacteria. Meanwhile, treatment with a pulse voltage of 80 volts for 15 min per day for seven days resulted in the wound state of three mice in the maturation phase and two mice in the proliferation phase on day 8 with an average wound area of 0.108 cm 2. Conclusion: The treatment with a pulse voltage of 80 volts for 15 min made the beef sterile, the mice wounds healed quickly, and the mice not stressed. The higher the blood glucose level, the slower the wound healing process.  


Sign in / Sign up

Export Citation Format

Share Document