TOTAL PARTICULATE MATTER, PM10, PM2.5 EMISSIONS FROM PALM OIL MILL BOILER

2016 ◽  
Vol 78 (6-11) ◽  
Author(s):  
M. M. Syahirah ◽  
M. Rashid ◽  
J. Nor Ruwaida

Utilization of fiber and shell as boiler fuel in palm oil mill industry generates particulate emission that need to be controlled before emitting to the environment. This study investigates the particulate mass size distribution of particulate matter sampled from palm oil mills having different boiler capacities. The particulate emission was performed at the stack following US EPA Method 17 and while the particulate size distribution was determined using particle size analyzer. Results showed that the total particulate mass concentration varied between 0.42 and 3.77 g/Nm3 (corrected at 7% O2). The emitted particulate was mainly found in the coarse particles, with 50% cumulative size distribution ranged from 21 to 38 µm. The particulate mass concentration of PM2.5 and PM10 of the total particulate emission was varied from 0.03 to 0.30 g/Nm3 and 0.37 to 0.73 g/Nm3, respectively. This contributes 0.8 to 71% and 13 to 95% of the total particulate mass concentration, respectively.

2013 ◽  
Vol 664 ◽  
pp. 133-137 ◽  
Author(s):  
H. Norelyza ◽  
M. Rashid

Multi-cyclones is commonly usedin the palm oil mill industry as particulate pollution arrestor. However, its ability in capturing particulate matter (PM) especially the fine particulate size fraction is limited. Thus, study has been carried out to investigate and predict the performance of MR-deDuster, a multi-cyclones unit developed as particulate emission control device in palm oil mill plant. The MR-deDuster is intentionally developed to overcome particulate emission issue facing by industries that generate particulate especially the palm oil mill industry. A number of semi-empirical theories were used to predict the performance of MR-deDuster. Based on the prediction, the MR-deDuster manages to capture particulate size 3.8µm at 50% particulate collection efficiency. The MR-deDuster also manages to achieve more than 90% for total particulate collection efficiency with low pressure drop.


Author(s):  
E. C. Hemba ◽  
E. A. Trisma ◽  
T. J. Ikyumbur

The mass concentration and size distribution of atmospheric particulate matter (PM) was measured in three major towns in Plateau state. The CW-HAT200 PM2.5, PM10 dust particle counter was used to measure the particle size in each major location within Jos, Shendam and Pankshin. The results revealed that both PM2.5 and PM10 concentration were high in morning hours in most of the measured locations. These values were however found decreasing in the afternoon. The higher value of PM2.5 and PM10 observed in the morning hours in some locations within the study area can be attributed to the high volume of motorists plying the roads during those hours. However, some locations within the study area their PM2.5 and PM10 were higher in the afternoon hours than morning hours. The PM sampling respirable dust sampler (AMP460NL model) was placed on the elevated platform of 1.5 m high and 20 cm away from obstacles in order to avoid any obstruction of the air from tall buildings and trees etc. Measurements were taken after 8-hours per location and the average air flow rate, sample time, initial and final mass of the filter paper were used to calculate the mass concentration of the suspended particulate matter in each locations. The mass concentration of the suspended particulate matter were higher in dry season than in the rain season for all locations. This can be attributed to the dust usually experienced during the dry season on the Plateau.


Author(s):  
Steven L. Alderman ◽  
Chen Song ◽  
Serban C. Moldoveanu ◽  
Stephen K. Cole

AbstractThe relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM) masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 10Described here is a study in which e-cigarette aerosols were collected on Cambridge filters with adsorbent traps placed downstream in an effort to capture any material passing through the filter. Amounts of glycerin, propylene glycol, nicotine, and water were quantified on the filter and downstream trap. Glycerin, propylene glycol, and nicotine were effciently captured (> 98%) by the upstream Cambridge filter, and a correlation was observed between filtration efficiency and the partial vapor pressure of each component. The present analysis was largely inconclusive with regard to filter efficiency and particle-vapor partitioning of water. [Beitr. Tabakforsch. Int. 26 (2014) 183-190]


2017 ◽  
Vol 17 (5) ◽  
pp. 1142-1155 ◽  
Author(s):  
Sabrina Rovelli ◽  
Andrea Cattaneo ◽  
Francesca Borghi ◽  
Andrea Spinazzè ◽  
Davide Campagnolo ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Barbora ŠVÉDOVÁ ◽  
Marek KUCBEL ◽  
Helena RACLAVSKÁ ◽  
Konstantin RACLAVSKÝ ◽  
Pavel KANTOR

Due to the increasing production and development of nanoparticles, it has become necessary to control the exposure to ultrafineparticles (aerodynamic diameter < 0.1 μm) when handling nanopaints. The paper deals with the number and mass distributionof particulate matter (PM) in an indoor environment before, during and after the application of paint Protectam FN containingtitanium nanoparticles. The size distribution determination was performed by the electrical low-pressure cascade impactor (ELPI+)in the range from 0.006 μm to 9.93 μm. The highest number of particles was observed in the range from 0.006 to 0.0175 μm. Theparticulate mass concentration ranging from 0.0175 to 0.0307 μm did not represent more than 0.5% of the sum of PM10 during theindividual measurements. The particle mass concentration increased in the range of 0.0175 to 0.0307 μm, after application of thecoating nanopaint Protectam FN, but it was observed that the total number of particles has decreased. During the days followingthe application of the nanopaint, the mass concentration in this grain size class was significantly reduced.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Nur H. Hanafi ◽  
Mimi H. Hassim ◽  
Mohd R. M. Yusuf

A study to establish the total particulate emission factor (EFs) from boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrestor was performed and reported in this research. The mill employs a 500 kg steam/ h capacity of water-tube typed boiler and processes 60 tonnes per hour of fresh fruit bunch (FFB). The samples of the dust were collected iso-kinetically using the USEPA method 17 sampling train through a sampling port located after a multidust cyclone unit. Results showed that the total dust generated from the boiler is 62.15 g/s and the calculated total dust emission factor based on the boiler capacity is 7.46 g/kg. Poor combustion process is among the main factor that leads to the high particulate emission. EFs data allows for early prediction of pollutants emission, which subsequently will assist in determining the degree of control and the air pollution control system needed, besides evaluating the effectiveness of the existing pollution control strategies. The establishment of EFs for palm oil mills will definitely bring benefits for a better management of health and safety risks in palm oil mills, now and in the future


1998 ◽  
pp. 1-6 ◽  
Author(s):  
M. Rashid ◽  
M. Ramli ◽  
M. Rozainee

A field evaluation on particulate emission concentrations from two different types of palm oil mill boilers (i.e water-tube, WT, and fire-tube, FT type boilers) was performed using a standard stack sampling procedures. A total of 12 WT and 12 FT boilers were studied. Six of the 12 WT boilers were equipped with multi-cyclones as a means of controlling particulate emissions from the boilers, whilst all 12 FT boilers were without any form of air particulate control equipment. Results showed that the mean particulate emission concentrations from water-tube type boilers with and without particulate control equipment installed was 1.11 ± 0.58 g/Nm3 and 1.93 ± 1.40 g/Nm3 respectively. There was no significant difference in the particulate emissions between WT boilers with or without particulate control installed. It was found that only one out of the six WT boilers with particulate control was able to meet the emission standards limit of 0.40 g/Nm3 while others were still violating the standard. Meanwhile, the mean particulate emission from all 12 FT type boilers (all were without control) was 0.5 1 ± 0.27 g/Nm3, which was found to be significantly lower (p 0.01) compared to the WT boiler emissions of without particulate control.Apparently, the characteristic of particulate size distributions generated by the two types of boilers could be an important factor affecting the findings and it is discussed further in this paper. Keywords :air pollution, particulate, palm oil mill, boilers.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
James J. Schauer‡

Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines produce increasingly lower particulate mass emissions, these methods become less and less stable and have high levels of measurement uncertainty. In this study, a characterization of mass emissions from engines with a range of particulate emission levels was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study. The results have shown that each of the mass measurement methods analyzed compare well at higher emission levels, but show significant disparity at the ultra-low emission levels commonly seen from modern diesel engines. Additionally, at ultra-low emission the uncertainty in the measurement becomes large, thus reducing confidence in the accuracy of the measurement. Based upon these findings, it would be difficult to justify a comparison between any two gravimetric measurement methods and it may be more appropriate to perform a reconstruction of the particulate mass due to a lower susceptibility to measurement error.


2015 ◽  
Vol 1125 ◽  
pp. 322-326
Author(s):  
J. Nor Ruwaida ◽  
M. Rashid ◽  
M.M. Syahirah

The remarkable growth of palm oil industry in Malaysia is undeniable. Approximately, one million ton of crude palm oil is produced by the industry in a month, thus put Malaysia as one of the largest producer in the world. Most of the mills are operated on cogeneration system, where the biomass residue of palm fibre and shell are used as fuel in the mill boilers mostly to generate steam and also electricity. This practise however produced considerable amount of particulates in terms of fly ash emitting to the environment. Thus, this study is to evaluate the particulate emission from five palm oil mill boilers with steam capacity ranging from 17-35 tonne/h. The results showed that the average particulate emission concentration exiting the stack was 2.21±1.20 g/Nm3 (corrected to 7% oxygen concentration), ranging from 0.42 to 3.77 g/Nm3. The study suggests that the fuel feed rates of fiber and shell was one of the parameters affecting the emission concentration in the boiler. Particulate morphology were also being presented in this study.


Sign in / Sign up

Export Citation Format

Share Document