TRIBOLOGICAL PERFORMANCE OF PALM KERNEL OIL ADDED WITH NANOPARTICLE COPPER OXIDE USING FOURBALL TRIBOTESTER

2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
P. Zulhanafi ◽  
Syahrullail, S. ◽  
M. M. Faridzuan

The remaining base stock of mineral oil resources is drawing attention to the researchers all over the world as the technology development is keep increasing over the years. Researchers also keep trying to figure out this issue by diverting the attention to other resources such as vegetable oil. This study is focusing on using palm oil based as lubricant with addition of nanoparticles copper oxide to improve the tribological behavior. There are 3 types of lubricant being used in this study which are mineral based engine oil (SAE 40), palm kernel oil (PKO) and palm kernel oil added with nanoparticle copper oxide (PKO+CuO). Fourball tribotester machine was used and the experiment was conducted by following the ASTM D4172 standard. The result analysis was focusing on coefficient of friction, wear scar diameter, surface roughness as well as wear worn observation. It was found that, PKO+CuO exhibited 20.12% and 8.73% lower coefficient of friction compared to SAE 40 and PKO respectively. However, PKO+CuO represented 10.13% and 1.74% higher wear scar diameter compared to SAE 40 and PKO respectively. The physical appearances of wear worn were observed and further discussed in this present study.

2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
Afifah, A. N. ◽  
Syahrullail, S. ◽  
Amirrul Amin M. ◽  
Faizal, H. M.

Since the last decade, vegetable oil has received tremendous attention as an alternative lubricant because of worsening state of environmental health and finite resources of mineral oil. However, the use of vegetable oil is restricted due to the poor low temperature fluidity and thermal-oxidative stability. These drawbacks can be enhanced by adding additive into the solution of vegetable oil. Thus, objective of this research is to investigate the influence of adding nanoparticle additive on tribological performance of palm kernel oil. The type of nanoparticle used throughout this study is copper oxide, which serves as anti-wear additive. Palm kernel oil (PKO), palm kernel oil-copper oxide nanoparticle (PKO-CuO), mineral oil (SAE-40), synthetic oil (SAE15W-50) are used as lubricant. Tribological properties if the used lubricants are evaluated using fourball tribotester under standard load and extreme pressure tests. Experimental results showed that the presence of nanoparticles in natural palm kernel oil improved tribological performances of friction and wear. The friction coefficient and wear scar diameter are reduced by approximately 5.0% and 3.5% respectively. The highest enhancement in friction coefficient value of ~20% was obtained under extreme pressure condition. Addition of nanoparticle also is found to improve load carrying capacity of PKO by 15%. 


2021 ◽  
Vol 25 (5) ◽  
pp. 877-885
Author(s):  
A.J. Odebode ◽  
K.L. Njoku ◽  
A.A. Adesuyi ◽  
M.O. Akinola

This study was carried out to investigate the phytotoxicity of spent engine oil and palm kernel sludge on seed germination, seedling early growth and survival of sunflower (Helianthus annuus L) and its phytoremediating potential. 8.0 kg topsoil mixed with 2, 4, 6, 8 and 10% (w/v) of spent engine oil and palm kernel sludge, while the control was not mixed with spent oil and sludge (0%). The seeds were sown on these soils and monitored daily. Parameters taken were; plant height, leaf number and stem girth. The result showed that spent engine oil treated plants adversely affected growth compared to palm kernel sludge plants and control which performed better. For plant height, the mean stem girth for control at 2nd week was 0.40±0.05 mm, spent engine oil was 5.96±0.97 palm kernel oil effluent was 14.73±1.16 and at 12th week, control was 1.30±0.05 while for SEO the plant had withered and 124.6±9.02 for POE. Number of leaves at the 12th week was 26.00±2.08 in the control, 8.66±0.66, for spent engine oil at 4%, while for palm oil effluent it was 27.66±0.66, at 4%, concentration respectively. Stem girth at 2 weeks for spent engine oil was 0.19±0.05 at 2%, 0.43±0.03 for palm kernel oil effluent and at the 12th week of planting at 10% concentration was 1.63±0.08 for palm kernel oil effluent, and all plants had withered off for spent engine oil at same concentration at the 12th week. Also, spent engine oil at all concentrations delayed the germination of Helianthus annuus by 2days compared to control. Comparison analysis test showed that growth in untreated plants were significantly higher (p>0.05) than spent oil and palm kernel sludge treated plants. Similar result was observed for leaf number and stem girth which had higher mean value in palm kernel sludge and control compared to spent oil. Sunflower grown in 8% and 10% palm kernel sludge contaminated soil also flowered eight days earlier than control plants, while spent oil treated plant did not. The result shows that sunflower cannot tolerate high (4%, 6%, 8% and 10%) concentrations of spent engine oil in soil compared to palm oil effluent. Therefore, spent engine oil should be properly disposed because of its adverse effect on the growth and yield of sunflower.


Author(s):  
Mohd Jumain Jalil ◽  
Aliff Farhan Mohd Yamin ◽  
Mohd Saufi Md Zaini ◽  
Veronique Gloria V. Siduru ◽  
Norhashimah Morad ◽  
...  

Background: Studies pertaining to the epoxidation of fatty acids, garnered much interest in recent years due to the rising demand of eco-friendly epoxides derived from vegetable oils. Methods: Epoxide is an important chemical precursor for the production of alcohols, glycols and polymers, like polyesters and epoxy resin. Epoxidation is the name given to the reaction when the double bonds are converted into epoxide. Results: Temperature at 55oC was used as a reference material in the epoxide process, as it produces a high yield epoxide being 88%. The kinetic rate of epoxidized palm kernel oil, k was obtained to be k11= 0.5125, k12= 0.05045, k21= 0.03185, k41= 0.01 and k51= 0.01243. Conclusion: Hence, by fitting the result with the experimental work and simulation, the summation of error being stimulated by I-sight simulation was 0.731116428 and the correlation between the experimental and simulation data was 0.925544.


2021 ◽  
Author(s):  
Samuel O. Egbuna ◽  
Ukeh J. Nwachukwu ◽  
Chinedu M. Agu ◽  
Christain O. Asadu ◽  
Bernard Okolo

2013 ◽  
Vol 54 (2) ◽  
pp. 1738-1745 ◽  
Author(s):  
Merete B. Munk ◽  
Alejandro G. Marangoni ◽  
Hanne K. Ludvigsen ◽  
Viggo Norn ◽  
Jes C. Knudsen ◽  
...  

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121569
Author(s):  
Chao Jin ◽  
Xin Liu ◽  
Tianyun Sun ◽  
Jeffrey Dankwa Ampah ◽  
Zhenlong Geng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document