PHOTOCATALYTIC REMOVAL OF PHENOL OVER MESOPOROUS ZnO/TiO2 COMPOSITES

2018 ◽  
Vol 80 (2) ◽  
Author(s):  
Klinsmann Cheong Lee Khang ◽  
Mohd Hayrie Mohd Hatta ◽  
Siew Ling Lee ◽  
Leny Yuliati

A series of mesoporous ZnO/TiO2 composites were successfully synthesized using cetyltrimethylammonium bromide surfactant. The composites of different Zn:Ti molar ratios (0.5:1, 0.75:1, and 1:1) were prepared by impregnating ZnO onto mesoporous TiO2. XRD results verified co-existence of both anatase TiO2 and hexagonal wurtzite ZnO in the ZnO/TiO2 composites. Based on the Tauc plots, all the composites showed almost the same band gap energy of approximately 3.21 eV. The fourier transform infrared spectroscopy results successful covering of ZnO on the surface of the TiO2 as the hydrophilicity property of TiO2 decreased remarkably with the loading of ZnO in the composites. N2 adsorption-desorption isotherms of the samples exhibited type-IV isotherm with a hysteresis loop. The Barrett-Joyner-Halenda pore size distribution revealed that the average pore size of the composites was around 3.6 nm, indicating the formation of mesopores dominantly in the samples. The photocatalytic removal of phenol over the samples under UV light irradiation after 3 h decreased in the order: ZnO/TiO2 composites > anatase TiO2 (with surfactant) > anatase TiO2 (without surfactant) > ZnO. The composite with Zn:Ti molar ratio of 0.75:1 has achieved the highest photocatalytic activity of 36.5% in the removal of phenol under UV light irradiation for 3 h.

RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46678-46685 ◽  
Author(s):  
L. H. Wee ◽  
M. Meledina ◽  
S. Turner ◽  
K. Custers ◽  
S. Kerkhofs ◽  
...  

Coating of anatase TiO2 nanoparticles on ordered mesoporous silica COK-12 platelets for effective photodegradation of various organic pollutants under UV light irradiation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhijun Ma ◽  
Jing Gao ◽  
Xingyuan Weng ◽  
Shuai Yang ◽  
Kai Peng

Abstract Aluminosilicate mesoporous materials were synthesized using F108 template (polyethylene glycol-polypropylene glycolpolyethylene glycol) at a concentration of 0.034 g/ml and the molar ratio of Al2O3 to SiO2 was 0.09. The products were then characterized using nitrogen adsorption/desorption tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The effects of various crystallization temperatures as well as sodium hydroxide concentrations on the average diameter, pore volume, surface area, and morphology of the synthetic material were analyzed. Results showed that a sodium hydroxide concentration of 11 mol/L and a crystallization temperature of 130 °C produced a synthetic material with regular pore size and homogeneous arrangement including a specific surface area of 137.62 m2/g, an average pore volume of 0.27 cm3/g, along with an average pore size of 15.33 nm.


2016 ◽  
Vol 864 ◽  
pp. 128-133
Author(s):  
Ardiansyah Taufik ◽  
Shofianina Djalaluidin ◽  
Rosari Saleh

Magnetic heterogeneous Fe3O4/TiO2/CuO catalyst were synthesized using sol-gel method. The molar ratio of Fe3O4/TiO2/CuO were varied from 1:1:0.1 until 1:1:5. The all synthesized catalyst were characterized using X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Field Emission Scanning Electron Microscope (FE-SEM), and Vibrating Sample Magnetometer (VSM). The result show that the magnetic heterogeneous Fe3O4/TiO2/CuO catalyst exhibit ferromagnetic behavior under room temperature. The catalytic performance were evaluated on the degradation of methylene blue under UV light and combination of ultrasound and UV-light Irradiation. The combination of ultrasound and UV-light irradiation exhibit batter catalytic performance than ultrasound irradiation only. The Magnetic heterogeneous Fe3O4/TiO2/CuO with molar ratio 1:1:0.1 shows highest catalytic performance. The reusability of catalyst were also observed.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3754
Author(s):  
Jan Kohout ◽  
Petr Koutník ◽  
Pavlína Hájková ◽  
Eliška Kohoutová ◽  
Aleš Soukup

A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).


Author(s):  
Faisal Hussin ◽  
Hendrik O. Lintang ◽  
Lee Siew Ling ◽  
Leny Yuliati

Photocatalytic removal of phenol under UV light irradiation was studied on zinc oxide (ZnO) photocatalysts, which were prepared via direct calcination (DC), and co-precipitation (CP) methods. The XRD patterns revealed that all of the prepared ZnO samples showed wurtzite structure, in which the ZnO-CP showed higher intensity of the diffraction peaks than the ZnO-DC sample. Optical and fluorescence properties of the prepared ZnO samples were similar to each other as confirmed by DR UV-Vis and fluorescence spectroscopy, respectively. The Stern-Volmer plot was investigated to study the interactions between the emission sites and the phenol. It was obtained that the emission sites of the ZnO-CP gave better interactions towards phenol molecules as compared to the ZnO-DC. After 6 hours reaction under UV light irradiation, the ZnO-CP sample showed two times higher photocatalytic activity for removal of phenol (10%) than that of the ZnO-DC (5%). It was suggested that the high activity observed on the ZnO-CP sample would be due to high crystallinity and good interactions with phenol. These results clearly suggested that the co-precipitation method was a good approach to prepare the highly active ZnO for the photocatalytic removal of phenol.


2008 ◽  
Vol 368-372 ◽  
pp. 1497-1499 ◽  
Author(s):  
Wen Yuan Xu ◽  
Lu Bin Wei ◽  
Ming Biao Luo

Titania-silica nanocomposites with different TiO2/SiO2 compositions have been prepared by a sol-gel and hybrid method from tetraethylorthosilicate (TEOS) and tetrabutyl titanate(TBT) and β-Cyclodextrin as a pore-forming template. Drying and calcining of the hybrid xerogel can lead to the formation of nanoporous particles with surface areas in the range of 298-418 m2/g. The effect of the β-cyclodextrin concentration, the molar ratio of TiO2/SiO2 and the calcining temperature on the phase composition and structural properties of TiO2/SiO2 composites were also investigated. The results show that an increase in β-cyclodextrin concentration can lead to a decrease of the surface area and an increase of average pore size, which can be controlled by the amount of β- cyclodextrin in the hybrid sol.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34806-34814 ◽  
Author(s):  
A. M. Ismael ◽  
A. N. El-Shazly ◽  
S. E. Gaber ◽  
M. M. Rashad ◽  
A. H. Kamel ◽  
...  

A TiO2/GO/CuFe2O4 heterostructure photocatalyst is fabricated by a simple and low cost ball milling pathway for enhancing the photocatalytic degradation of chlorinated pesticides under UV light irradiation.


2021 ◽  
Author(s):  
Ayman Awad Ali Abdelrazik ◽  
Ibrahim S. Ahmed ◽  
Alaa S. Amin ◽  
Mai M. Gneidy

Abstract A new preparation method has been successfully utilized for the fabrication of zinc oxide nanoparticles using the auto-combustion method and fuels (tartaric acid: TA and citric acid: CA) with molar ratio (Zn:TA:CA=1:1:0, 1:0:0.55 and 1:0.5:0.275). The as-fabricated ZTA, ZCA and ZCTA samples annealed at 500 oC for two hours. The calcined zinc oxide nanoparticles were investigated by various tools such as XRD, DRS, FT-IR, and HR-TEM. The average crystallite size of the fabricated zinc oxide was determined to be 24-39 nm. The direct band gap, lattice parameters, unit cell volume (V), the dislocation density (D) and the Zn-O bond length (L) of the synthesized ZTA, ZCA and ZCTA samples were determined. The synthesized zinc oxide nanoparticles are used as nanocatalyst for photodegradation of reactive red 195 and methyl orange dyes under UV light irradiation. The degradation of reactive red 195 dye was 91-94 % after 70 min over the synthesized zinc oxide and the values of degradation increased to be 99-99.8 % in 50 min with H2O2 under UV light irradiation. Also, the degradation of methyl orange dye was 57.55-70.57 % after 300 min over the synthesized zinc oxide (ZTA, ZCA and ZCTA samples) and the values of degradation increased to be 81-95 % in 70 min with H2O2 under UV light irradiation. Finally, the appeared rate constant (Kapp) is determined and the mechanism of the photocatalysis process is suggested for the degradation of the dyes over the synthesized zinc oxide nanoparticles.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


Sign in / Sign up

Export Citation Format

Share Document