scholarly journals Anatase TiO2 nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts

RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46678-46685 ◽  
Author(s):  
L. H. Wee ◽  
M. Meledina ◽  
S. Turner ◽  
K. Custers ◽  
S. Kerkhofs ◽  
...  

Coating of anatase TiO2 nanoparticles on ordered mesoporous silica COK-12 platelets for effective photodegradation of various organic pollutants under UV light irradiation.

2018 ◽  
Vol 80 (2) ◽  
Author(s):  
Klinsmann Cheong Lee Khang ◽  
Mohd Hayrie Mohd Hatta ◽  
Siew Ling Lee ◽  
Leny Yuliati

A series of mesoporous ZnO/TiO2 composites were successfully synthesized using cetyltrimethylammonium bromide surfactant. The composites of different Zn:Ti molar ratios (0.5:1, 0.75:1, and 1:1) were prepared by impregnating ZnO onto mesoporous TiO2. XRD results verified co-existence of both anatase TiO2 and hexagonal wurtzite ZnO in the ZnO/TiO2 composites. Based on the Tauc plots, all the composites showed almost the same band gap energy of approximately 3.21 eV. The fourier transform infrared spectroscopy results successful covering of ZnO on the surface of the TiO2 as the hydrophilicity property of TiO2 decreased remarkably with the loading of ZnO in the composites. N2 adsorption-desorption isotherms of the samples exhibited type-IV isotherm with a hysteresis loop. The Barrett-Joyner-Halenda pore size distribution revealed that the average pore size of the composites was around 3.6 nm, indicating the formation of mesopores dominantly in the samples. The photocatalytic removal of phenol over the samples under UV light irradiation after 3 h decreased in the order: ZnO/TiO2 composites > anatase TiO2 (with surfactant) > anatase TiO2 (without surfactant) > ZnO. The composite with Zn:Ti molar ratio of 0.75:1 has achieved the highest photocatalytic activity of 36.5% in the removal of phenol under UV light irradiation for 3 h.


2019 ◽  
Vol 48 (8) ◽  
pp. 2692-2700 ◽  
Author(s):  
Hui-Tao Fan ◽  
Xue-Guo Liu ◽  
Xiao-Jing Xing ◽  
Bo Li ◽  
Kun Wang ◽  
...  

An Ag–OMS-C nanocomposite with a high surface area was proposed, and its potential application for catalytic activity was highlighted.


2009 ◽  
Vol 59 (4) ◽  
pp. 737-744 ◽  
Author(s):  
N. Hayashi ◽  
J. Liang ◽  
H. Choshi ◽  
E. Kasai

Persistent organic pollutants (POPs) are very difficult to degrade when present in the environment and finally accumulate in the human body. Therefore, it is essential to develop efficient technologies for removal of POPs from polluted sediments. In this study, the authors attempted to evaluate the potential of hexachlorobenzene (HCB; a POP) removal by using ultrasonic irradiation and its combination with other advanced chemical oxidation processes (AOPs) and surfactant addition. The average removal ratios for ultrasonic irradiation alone and ultrasonic in combination with UV light irradiation were almost identical at 40%, and the efficiency could be improved to about 49% by combination with photocatalysis or surfactant addition. The dual-frequency ultrasonic irradiation showed the highest HCB removal ratio.


Author(s):  
Faisal Hussin ◽  
Hendrik O. Lintang ◽  
Lee Siew Ling ◽  
Leny Yuliati

Photocatalytic removal of phenol under UV light irradiation was studied on zinc oxide (ZnO) photocatalysts, which were prepared via direct calcination (DC), and co-precipitation (CP) methods. The XRD patterns revealed that all of the prepared ZnO samples showed wurtzite structure, in which the ZnO-CP showed higher intensity of the diffraction peaks than the ZnO-DC sample. Optical and fluorescence properties of the prepared ZnO samples were similar to each other as confirmed by DR UV-Vis and fluorescence spectroscopy, respectively. The Stern-Volmer plot was investigated to study the interactions between the emission sites and the phenol. It was obtained that the emission sites of the ZnO-CP gave better interactions towards phenol molecules as compared to the ZnO-DC. After 6 hours reaction under UV light irradiation, the ZnO-CP sample showed two times higher photocatalytic activity for removal of phenol (10%) than that of the ZnO-DC (5%). It was suggested that the high activity observed on the ZnO-CP sample would be due to high crystallinity and good interactions with phenol. These results clearly suggested that the co-precipitation method was a good approach to prepare the highly active ZnO for the photocatalytic removal of phenol.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13331-13340 ◽  
Author(s):  
T. N. Ng ◽  
X. Q. Chen ◽  
K. L. Yeung

Flow-synthesis of mesoporous silica allows deliberate and precise control over the size and shapes and enables the preparation of complex microstructures (i.e., hollow spheres).


Sign in / Sign up

Export Citation Format

Share Document