scholarly journals SIMULTANEOUS METHYL ESTER PRODUCTION AND CAROTENE RECOVERY FROM CRUDE PALM OIL USING MEMBRANE REACTOR

2019 ◽  
Vol 81 (2) ◽  
Author(s):  
I Gusti Bagus Ngurah Makertihartha ◽  
Khoiruddin Khoiruddin ◽  
Eryk Bone Pratama Nabu ◽  
Putu Teta Prihartini Aryanti ◽  
I Gede Wenten

Fatty acid methyl ester (FAME) or biodiesel¸ which is considered as an alternative renewable fuel is usually produced via transesterification reaction of triglyceride from vegetable oil. Generally, there are two major challenges in the production of biodiesel i.e., reversible reaction of transesterification and immiscibility between oil and alcohol. Membrane reactor (MR), which combines reaction and separation, is an alternative process to overcome those challenges. The aim of the integrated reaction-separation process is to shift the equilibrium reaction, and to achieve a higher reaction conversion. The methyl ester that is produced may be separated to meet the biodiesel quality standards. FAME purification using membrane can be conducted without water washing (dry process), and this is interesting as the associated wastewater treatment step is eliminated. Another attractive feature of MR in esterification process is carotenoid recovery which is beneficial to improve the efficiency of the process. Several studies have indicated the efficacy of carotenoids recovery from methyl ester mixture. This paper reviews the use of MR for palm oil esterification. Membrane separation performances in methyl ester purification are also discussed. In addition, the potential of carotene recovery during esterification process is highlighted. 

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 597 ◽  
Author(s):  
Damanik ◽  
Ong ◽  
Mofijur ◽  
Tong ◽  
Silitonga ◽  
...  

Nowadays, increased interest among the scientific community to explore the Calophyllum inophyllum as alternative fuels for diesel engines is observed. This research is about using mixed Calophyllum inophyllum-palm oil biodiesel production and evaluation that biodiesel in a diesel engine. The Calophyllum inophyllum–palm oil methyl ester (CPME) is processed using the following procedure: (1) the crude Calophyllum inophyllum and palm oils are mixed at the same ratio of 50:50 volume %, (2) degumming, (3) acid-catalysed esterification, (4) purification, and (5) alkaline-catalysed transesterification. The results are indeed encouraging which satisfy the international standards, CPME shows the high heating value (37.9 MJ/kg) but lower kinematic viscosity (4.50 mm2/s) due to change the fatty acid methyl ester (FAME) composition compared to Calophyllum inophyllum methyl ester (CIME). The average results show that the blended fuels have higher Brake Specific Fuel Consumption (BSFC) and NOx emissions, lower Brake Thermal Efficiency (BTE), along with CO and HC emissions than diesel fuel over the entire range of speeds. Among the blends, CPME5 offered better performance compared to other fuels. It can be recommended that the CPME blend has great potential as an alternative fuel because of its excellent characteristics, better performance, and less harmful emission than CIME blends.


2014 ◽  
Vol 692 ◽  
pp. 133-138
Author(s):  
Athitan Timyamprasert ◽  
Vittaya Punsuvon ◽  
Kasem Chunkao ◽  
Juan L. Silva ◽  
Tae Jo Kim

The aim of this research was to develop a two-step technique to prepare biodiesel from waste palm oil (WPO) with high free fatty acid content. The developed process consists of esterification and transesterification steps. Response surface methodology (RSM) was applied for investigating the experimental design for esterification step. Design of experiment was performed by application of 5-levels-3-factors central composite design in order to study the optimum condition for decreasing FFA in WPO. The WPO with low FFA was further experimented in transesterification step to obtain fatty acid methyl ester (FAME). The investigated results showed that the WPO containing 48.62%wt of high FFA. The optimum condition of esterification step was 28 moles of methanol to FFA in WPO molar ratio, 5.5% sulfuric acid concentration in 90 min of reaction time and 60 °C of reaction temperature. After transesterification step, WPO biodiesel gave methyl ester content at 84.05% according to EN 14103 method. The properties of WPO methyl ester meet the standards of Thailand community biodiesel that can be used as fuel in agricultural machine.


2014 ◽  
Vol 118 ◽  
pp. 7-19 ◽  
Author(s):  
Baharak Sajjadi ◽  
Abdul Aziz Abdul Raman ◽  
Saeid Baroutian ◽  
Shaliza Ibrahim ◽  
Raja Shazrin Shah Raja Ehsan Shah

2021 ◽  
Vol 36 (1) ◽  
pp. 550-557
Author(s):  
Mahendran Subramaniam ◽  
Shamsul Sarip ◽  
Abdul Yasser Abd. Fatah ◽  
Hazilah Mad Kaidi

Palm oil methyl ester (PME) is a form of fatty acid methyl ester (FAME) which in principle is biodiesel. Malaysia could greatly leverage the abundance of PME sources given its status as a palm oil-producing country. In this paper, palm oil is evaluated for its potential as a biofuel feedstock and its derivatives’ vast use in the domestic market but limited use in other regions. In order to create a growth market of PME, Malaysia has introduced an increase of PME blend component in its nation’s biodiesel use for transport and industrial sectors. A phased increase from 5% to the latest of 20% PME blend in biodiesel certainly has the potential to reduce greenhouse gas emissions, while creating a boost to the local market. However, the government must be careful in managing subsidies of conventional petroleum-based diesel fuel, as this would have an eventual effect on the supply chain of biodiesel in Malaysia. There are limited studies on diesel fuel physicochemical characteristics that are used as base-stock for the biodiesel blend and whether it could be manipulated to maximise yield while maintaining conformance to mandated fuel standards. Multiple relevant research papers were studied of its relevance to PME use as biodiesel FAME to meet high blending rates in Malaysia.


2018 ◽  
Vol 95 (11) ◽  
pp. 1373-1384 ◽  
Author(s):  
Nisa Paichid ◽  
Tewan Yunu ◽  
Sappasith Klomklao ◽  
Poonsuk Prasertsan ◽  
Kanokphorn Sangkharak

Sign in / Sign up

Export Citation Format

Share Document