scholarly journals Application of Drying Model to Determine Extraction Behaviours on Peanut Skin Oil Recovery by Supercritical Carbon Dioxide-Ethanol

2021 ◽  
Vol 17 (2) ◽  
pp. 114-127
Author(s):  
Nicky Rahmana Putra ◽  
Dwila Nur Rizkiyah ◽  
Ahmad Hazim Abdul Aziz ◽  
Zuhaili Idham ◽  
Jumakir Jumakir ◽  
...  

The main objective of this study was to determine the mass transfer for extraction of peanut (Arachis hypogea) skin by using drying models as alternatives extraction models. The mass transfer was measured at the pressure ranging from 10 MPa to 30 MPa, temperature of 40 oC to 70 oC, and rate of modifier 0.075 mL/min to 0.225 mL/min. The Lewis, Page, Peleg, Henderson and Pabis, and Avhad and Macetti as drying models were modified to illustrate the extraction process and to transform as alternative empirical models. An average absolute relative deviation percentage (AARD%) of Lewis, Page, Peleg, Henderson - Pabis, and Avhad-Macetti was 9.52%, 4.67%, 19.41%, 0.26%, and 0.04%. Avhad and Macetti model offered the best fitting between experimental data and modelling data. The results showed that drying model was applicable to correlate the experimental data of extraction process due to low percentage of error and high coefficient determination.

1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


1993 ◽  
Vol 58 (5) ◽  
pp. 1078-1086
Author(s):  
Zdeněk Palatý

The paper deals with the mass transfer in a liquid on a plate with mobile packing. A procedure has been suggested which enables estimation of the mass transfer coefficients from experimental data considering the dispersion flow of the liquid. The results obtained from the desorption of CO2 from water are presented graphically and in the form of empirical equation.


2005 ◽  
Vol 70 (3) ◽  
pp. 383-402
Author(s):  
Valery A. Danilov ◽  
Il Moon

This paper is devoted to the development of a new method for estimating mass transfer coefficients and effective area in packed columns in the case of reactive absorption. The method is based on a plug-flow model of reactive absorption of carbon dioxide with sodium hydroxide solution. The parameter estimation problem is solved using an optimization technique. Some mass transfer parameters are found to be correlated. Global sensitivity analysis by Sobol's technique showed that the unit model with the defined objective function is sensitive to the estimated parameter. Case studies of reactive absorption with different packings illustrate application of the proposed method for estimating mass transfer coefficients and effective area from column operation data. The model calculations are compared with experimental data obtained by other authors. The concentration profiles calculated by the unit model with the estimated parameters are shown to match well with experimental profiles from literature. A good agreement between estimated values and experimental data from literature confirms the applicability of this method.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


Author(s):  
Boming Yu

In the past three decades, fractal geometry and technique have received considerable attention due to its wide applications in sciences and technologies such as in physics, mathematics, geophysics, oil recovery, material science and engineering, flow and heat and mass transfer in porous media etc. The fractal geometry and technique may become particularly powerful when they are applied to deal with random and disordered media such as porous media, nanofluids, nucleate boiling heat transfer. In this paper, a summary of recent advances is presented in the areas of heat and mass transfer in fractal media by fractal geometry technique. The present overview includes a brief summary of the fractal geometry technique applied in the areas of heat and mass transfer; thermal conductivities of porous media and nanofluids; nucleate boiling heat transfer. A few comments are made with respect to the theoretical studies that should be made in the future.


1992 ◽  
Vol 114 (3) ◽  
pp. 727-734 ◽  
Author(s):  
W. C. Lee ◽  
O. A. Plumb ◽  
L. Gong

An experimental study has been conducted to provide a data base for drying packed beds of granular, nonhygroscopic materials. Experimental results for drying rate, saturation distribution, temperature distribution, and surface saturation are reported for drying glass beads under carefully documented drying conditions. Capillary pressure for both imbibition and drainage was measured for the glass beads, whose size ranged from 65 μm to 450 μm. The drying results demonstrate that, contrary to available model predictions, porous materials do not necessarily exhibit saturation gradients that always increase with distance from the drying surface. Under certain conditions the capillary potential is sufficient to create an internal drying front. The measurements of surface saturation are the first to be reported. They are utilized to speculate on the reasons for the failure of drying models to compare well with experiment without adjusting the convective heat or mass transfer coefficients.


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


2021 ◽  
Vol 1038 ◽  
pp. 108-115
Author(s):  
Yuliana Hapon ◽  
Maksym Kustov ◽  
Volodumur Kalugin ◽  
Alexander Savchenko

The paper deals with experimental data regarding the effect of internal and external factors on the corrosion decay of Zr1Nb alloy fuel elements. Based on the analysis results, losses of zirconium that transfers to oxide or coolant as per the fuel element wall weight and thickness as well as economic losses from their corrosion decay have been theoretically calculated. To avoid a state-level emergency occurrence, an increase in the fuel element wall thickness up to 660 μm is proposed, which can increase the operating life under the conditions of trouble-free coolant mass transfer hydrodynamic mode.


1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


Author(s):  
Mustafa Kamal Abdul Aziz ◽  
Takayuki Okayama ◽  
Ryota Kose ◽  
Noor Azian Morad ◽  
Noor Baini Nabila Muhamad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document