Multiple Fracture Initiation Effect on the Accuracy of Hydraulic Fracturing Simulation

2021 ◽  
Author(s):  
Ziad Bennour ◽  
Walid Mahmud ◽  
Mansur Ermila
SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1839-1855 ◽  
Author(s):  
Bing Hou ◽  
Zhi Chang ◽  
Weineng Fu ◽  
Yeerfulati Muhadasi ◽  
Mian Chen

Summary Deep shale gas reservoirs are characterized by high in-situ stresses, a high horizontal-stress difference (12 MPa), development of bedding seams and natural fractures, and stronger plasticity than shallow shale. All of these factors hinder the extension of hydraulic fractures and the formation of complex fracture networks. Conventional hydraulic-fracturing techniques (that use a single fluid, such as guar fluid or slickwater) do not account for the initiation and propagation of primary fractures and the formation of secondary fractures induced by the primary fractures. For this reason, we proposed an alternating-fluid-injection hydraulic-fracturing treatment. True triaxial hydraulic-fracturing tests were conducted on shale outcrop specimens excavated from the Shallow Silurian Longmaxi Formation to study the initiation and propagation of hydraulic fractures while the specimens were subjected to an alternating fluid injection with guar fluid and slickwater. The initiation and propagation of fractures in the specimens were monitored using an acoustic-emission (AE) system connected to a visual display. The results revealed that the guar fluid and slickwater each played a different role in hydraulic fracturing. At a high in-situ stress difference, the guar fluid tended to open the transverse fractures, whereas the slickwater tended to activate the bedding planes as a result of the temporary blocking effect of the guar fluid. On the basis of the development of fractures around the initiation point, the initiation patterns were classified into three categories: (1) transverse-fracture initiation, (2) bedding-seam initiation, and (3) natural-fracture initiation. Each of these fracture-initiation patterns had a different propagation mode. The alternating-fluid-injection treatment exploited the advantages of the two fracturing fluids to form a large complex fracture network in deep shale gas reservoirs; therefore, we concluded that this method is an efficient way to enhance the stimulated reservoir volume compared with conventional hydraulic-fracturing technologies.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Minhui Qi ◽  
Mingzhong Li ◽  
Tiankui Guo ◽  
Chunting Liu ◽  
Song Gao ◽  
...  

The oriented perforating is the essential technique to guide the refracture reorientation, but the influence of the oriented perforation design on the refracture steering radius is still unclear. In this paper, the factors influencing the refracture reorientation were studied by simulation models and experiments. The effects of initial fracture, well production, and perforations on the refracture initiation and propagation were analyzed. Three-dimensional finite element models were conducted to quantify the impact of perforation depth, density, and azimuth on the refracture. The large-scale three-axis hydraulic fracturing experiments guided by oriented perforations were also carried out to verify the fracture initiation position and propagation pattern of the simulation results. The research results showed that perforations change the near-wellbore induced stress distribution, thus changing the steering radius of the refracture. According to the simulation results, the oriented perforation design has a significant influence on the perforation guidance effect and refracture characteristics. Five hydraulic fracturing experiments proved the influence of perforating parameters on fracture initiation and morphology, which have a right consistency between the simulation results. This paper presents a numerical simulation method for evaluating the influence of the refracture reorientation characteristics under the consideration of multiple prerefracturing induced-stress and put forward the oriented perforation field design suggestions according to the study results.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2026-2040 ◽  
Author(s):  
Xiaojiang Li ◽  
Gensheng Li ◽  
Wei Yu ◽  
Haizhu Wang ◽  
Kamy Sepehrnoori ◽  
...  

Summary Liquid/supercritical carbon dioxide (L/SC-CO2) fracturing is an emerging technology for shale gas development because it can effectively overcome problems related to clay swelling and water scarcity. Recent applications show that L/SC-CO2 fracturing can induce variations in temperature. Understanding of this phenomenon is rudimentary and needs to be carefully addressed to improve the understanding of CO2 thermodynamic behavior, and thus helps to optimize CO2 fracturing in the field. In this paper, we develop a numerical model to assess the impact of thermal effect on fracture initiation during CO2 fracturing. The model couples fluid flow and heat transfer in the fracture, and is verified by a peer-reviewed solution and observation in laboratory experiments. The velocity, pressure, and temperature are calculated at various time to demonstrate the thermodynamic behavior during fracture initiation. A pseudo shock wave is observed, associated with a compression wave and an expansion wave, which finally leads to an increase in temperature in the new fracture and a decrease in temperature in the initial fracture. The thermal stress is derived to investigate the difference between hydraulic fracturing and CO2 fracturing. The results show that thermal stress, resulting from CO2 fracturing initiation, is comparable to the rock strength, which will help induce microfractures, and thus promote the fracture complexity. The formation pressure after CO2 fracturing is also calculated to evaluate the pressure-buildup potential. This work highlights the importance of CO2 expansion during and after fracturing. It is one of the unique features that differs from hydraulic fracturing. For field-design recommendations, to enhance the thermal effect of CO2 fracturing, it is a good strategy to pump CO2 at high pressure and low temperature into the reservoirs with high Young's modulus, low Poisson's ratio, low permeability, and high geothermal temperature (or large depth). This paper does not address the dynamics of fracture propagation under the influence of thermal effect. Rather, it intends to demonstrate the potential of the thermal effect of CO2 fluid in assisting the fracture propagation, and the importance of incorporating the compressibility of CO2 into fracture modeling and operation design. Failing to account for this thermal effect might underestimate the fracture complexity and stimulated reservoir volume.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhigang Yuan ◽  
Yaohua Shao

The mechanism of how hydraulic fracturing influences gas drainage in coal-rock mass is still not clear due to its complex mechanism. In this work, statistical distributions are firstly introduced to describe heterogeneity of coal-rock mass; a novel simultaneously coupled mathematical model, which can describe the fully coupled process including seepage-damage coupling during hydraulic fracturing process and subsequent gas flow during gas drainage process, is established; its numerical implementation procedure is coded into a Matlab program to calculate the damage variables, and it partly uses COMSOL solver to obtain numerical solutions of governing equations with damage-flow coupling; the mathematical model and its implementation are validated for initial damage pressure and mode of a single solid model without considering flow-damage coupling, as well as fracture initiation pressure and influence of heterogeneity on damage evolution of hydraulic fracturing considering flow-damage coupling; and finally, based on an engineering practice of hydraulic fracturing with two boreholes, the mechanism of how hydraulic fracturing influences gas drainage is investigated, numerical simulation results indicate that coal-rock mass pore-fissure structure has been improved, and there would exist a gas migration channel with characteristics of higher porosity and lower stresses, which demonstrates significant effects and mechanism of hydraulic fracturing on improving coal-rock permeability and enhancing gas drainage. The research results provide a guide for operation of hydraulic fracturing and optimal layout of gas drainage boreholes.


2014 ◽  
Vol 488-489 ◽  
pp. 417-420 ◽  
Author(s):  
Xiao Xi Men ◽  
C.A. Tang ◽  
Zhi Hui Han

Hydraulic fracturing process in fractured rockmass which with an existing single natural fracture at its various conditions: its different angles and different lengths was simulated by using RFPA2D(2.0)-Flow version which adopts the finite element method and considers the heterogeneous characteristics of rock in meso-scale, creates seepage-stress-failure coupling model. The effect tendency of natural fractures angle and length on the seepage characteristics of fractured rockmass was given through the description of tensile fracture initiation and propagation in the rock specimens. The simulation results show that the effect of these two factors on fractures initiation, propagation and rockmass stability under the hydraulic fracturing could be remarkable.


2013 ◽  
Vol 275-277 ◽  
pp. 278-281 ◽  
Author(s):  
Hai Yan Zhu ◽  
Jing Gen Deng ◽  
Song Yang Li ◽  
Zi Jian Chen ◽  
Wei Yan ◽  
...  

Considering the combined action of the fluid penetration and the casing, the seepage coupled deformation finite element model of the highly deviated casing perforation well is established by using the tensile strength failure criterion and applied on the BZ25-1 oil filed. The results show that the increasing of the perforation angle and the well azimuth and the decreasing of the inclination would lead to a higher fracture initiation pressure. The fracture initiation point always locates on the wellbore face when the influence of the casing is considered. When the casing is ignored: when the perforation angle is 0°-45°, the fracture initiation point locates on the root of the tunnel; when the angle is 45°-90°, the fracture initiation point may be on the wellbore face or the perforation biased toward the maximum horizontal stress direction; when the angle is near to 90°, the hydraulic fracturing difficultly fractures the rock through the perforation tunnels. The laboratory hydraulic fracturing simulation experiments of 45° deviated well are carried through 400mm3 cement specimen so as to obtain the fracture initiation point and geometric shape under different perforation angles, the results verify the accuracy of the numerical simulation method.


2014 ◽  
Author(s):  
Frank F. Chang ◽  
Kirk Bartko ◽  
Steve Dyer ◽  
Gallyam Aidagulov ◽  
Roberto Suarez-Rivera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document