Identification of Non-Linear Force Coefficients for the Radial Motion of a Squeeze Film Damper

Author(s):  
J X Zhang ◽  
J B Roberts

The fluid force generated in a squeeze film damper undergoing large amplitude radial motion is described in terms of non-linear hydrodynamic inertial and damping coefficients, together with afluid static force. Linear-in-the-parameter polynomial forms are introduced to represent the variation of these contributions with radial position. A generalized state variable filter identification method is developed which enables all the parameters in the non-linear model to be estimated from experimental data. The method is validated by processing simulated data and then applied to some new experimental data. Experimental results, relating to the influence of the supply pressure and the operating frequency on the coefficients, are presented and discussed. Comparisons are made with corresponding predictions derived from existing lubrication theory. The parametric non-linear model is found to give a good fit to experimental data over a significant region within the vicinity of the initial static equilibrium position. Through a combination of results, the variation of the fluid force coefficients and the fluid static force with eccentricity, over nearly the whole range of the radial clearance, is obtained. Temporal inertia is found to be more important than convective inertia for motion near the centre of the clearance circle. The existence of a fluid static force, suggested by previous work is confirmed. It is found that this force is linearly proportional to the oil supply pressure.

1996 ◽  
Vol 118 (3) ◽  
pp. 608-616 ◽  
Author(s):  
J. X. Zhang ◽  
J. B. Roberts

A centrally grooved short squeeze film damper (SFD), together with its lubricant supply mechanism (LSM), is analyzed, using an integrated theoretical model. It is shown that the traditional analysis for such a damper, where the effects of the central groove and the LSM are ignored, can lead to a seven-fold underestimation of the magnitude of the hydrodynamic force coefficients. The new theory gives predictions for the damping coefficients which are in good agreement with corresponding experimental results. Moreover, a five-fold improvement is obtained for both the temporal and convective inertia coefficients, at low values of eccentricity. The new model leads to the prediction of a nonzero fluid static force which, in conformity with experimental results, is linearly related to the supply pressure. The existence of this static force has not been explained by previous theoretical work on SFDs.


Author(s):  
J X Zhang

Approximate expressions are obtained for static fluid pressure and force for a centrally grooved squeeze film damper (SFD) resting at an equilibrium position without vibration. The analysis shows that, to some extent, grooved SFDs may share some characteristics with hydrostatic bearings, due to the existence of the lubricant supply pressure. Thus static fluid force and hence oil stiffness may exist in SFDs, in addition to the conventional inertial and damping coefficients for SFDs. This paper is solely focused on the static fluid forces and oil stiffness generated in an SFD with a finite length groove. Flow continuity is used at the centre of the groove, which takes into account the effects of the inlet oil flowrate and oil supply pressure. This use of flow continuity differs substantially from the traditional use of constant pressure in the central groove, and it provides better results. At the interface between the groove and the thin film land, a step bearing model with ignored fluid inertia is employed. It is verified by both the theory and previous experiments that the static fluid force and stiffness are linearly proportional to both the lubricant supply pressure and the eccentricity ratio of the SFD journal.


1994 ◽  
Vol 116 (3) ◽  
pp. 528-534 ◽  
Author(s):  
J. Zhang ◽  
J. B. Roberts ◽  
J. Ellis

The experimentally determined behavior of a short radial squeeze-film damper with no end seals, executing circular centered orbits, is discussed. Accurate circular orbits were achieved, for ε values in the range 0.1 and 0.8, by using digitally generated signals to drive two electromagnetic shakers. Radial and tangential dynamic fluid force coefficients were estimated from measurements of the applied forces and the orbit radii, using a simple algebraic method. Cavitation was found to occur when ε exceeded 0.5, at large orbit frequencies, and was the cause of an observed jump-up phenomenon. The magnitude of an oil stiffness effect, previously reported by the authors and confirmed by the present results, was found to depend significantly on the oil supply pressure. Its contribution to the total fluid force was of the same order as that from fluid inertia, in the case of small orbits (ε ≪ 1).


Author(s):  
W S Ng ◽  
M C Levesley ◽  
M Priest

The non-linear vibration of a squeeze film damper (SFD) supported rotor assembly is closely linked to the presence of air bubbles in the lubricant, due to cavitation, where the discrete gas phase influences the squeeze film pressure profile and gives rise to a non-linear stiffness force. The aim of this paper is to assess the ability of a computational model for homogeneous bubbly oil to predict the influence of air bubbles on the film reaction forces under various operating parameters. The numerical model which considers the solubility of gas and the growth of gas bubbles was developed using the finite-element software, FEMLAB™. Parametric studies of eccentricity ratio, whirling frequency, and supply pressure were conducted to evaluate the influences of air bubbles on the pressure field and hence the squeeze film forces. Results show that an increase in eccentricity ratio and whirling frequency enhances the growth of air content in lubricant and hence increases the radial (stiffness) to tangential (damping) force ratio in an SFD, whereas an opposite effect is gained by applying higher supply pressure. Compared with the classical theoretical half-film model predictions, the bubbly oil model provides a more realistic estimation with respect to different damper operating conditions. From the simulation findings, it can be concluded that the homogeneous two-phase flow model reasonably describes the bubbly oil behaviour in SFDs and effectively shows the rise in stiffness force due to the growth of air bubbles. The homogeneous model can be easily applied to the well-established lubrication equation and solved with efficiency. However, any possible interfacial effects between the liquid and gas phases are inevitably concealed. The success of the current model allows its subsequent coupling with a structural rotor to form a multi-disciplinary model for unbalance analysis.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1968 ◽  
Author(s):  
Sylvie Bilent ◽  
Thi Hong Nhung Dinh ◽  
Emile Martincic ◽  
Pierre-Yves Joubert

This paper reports on the study of microporous polydimethylsiloxane (PDMS) foams as a highly deformable dielectric material used in the composition of flexible capacitive pressure sensors dedicated to wearable use. A fabrication process allowing the porosity of the foams to be adjusted was proposed and the fabricated foams were characterized. Then, elementary capacitive pressure sensors (15 × 15 mm2 square shaped electrodes) were elaborated with fabricated foams (5 mm or 10 mm thick) and were electromechanically characterized. Since the sensor responses under load are strongly non-linear, a behavioral non-linear model (first order exponential) was proposed, adjusted to the experimental data, and used to objectively estimate the sensor performances in terms of sensitivity and measurement range. The main conclusions of this study are that the porosity of the PDMS foams can be adjusted through the sugar:PDMS volume ratio and the size of sugar crystals used to fabricate the foams. Additionally, the porosity of the foams significantly modified the sensor performances. Indeed, compared to bulk PDMS sensors of the same size, the sensitivity of porous PDMS sensors could be multiplied by a factor up to 100 (the sensitivity is 0.14 %.kPa−1 for a bulk PDMS sensor and up to 13.7 %.kPa−1 for a porous PDMS sensor of the same dimensions), while the measurement range was reduced from a factor of 2 to 3 (from 594 kPa for a bulk PDMS sensor down to between 255 and 177 kPa for a PDMS foam sensor of the same dimensions, according to the porosity). This study opens the way to the design and fabrication of wearable flexible pressure sensors with adjustable performances through the control of the porosity of the fabricated PDMS foams.


Author(s):  
Luis San Andrés ◽  
Bonjin Koo

Abstract Practice and experiments with squeeze film dampers (SFDs) sealed with piston rings (PRs) show the lubricant exits through the PR slit, i.e., the gap made by the PR abutted ends when installed, forced as a jet during the portion of a rotor whirl cycle generating a positive squeeze film pressure. In the other portion of a whirl cycle, a subambient dynamic pressure ingests air into the film that mixes with the lubricant to produce a bubbly mixture. To reduce persistent air ingestion, commercial air breathing engines utilizing PRSFDs demand of a sufficiently large lubricant supply pressure (Ps), and hence a larger flow rate that is proportional to the journal squeeze velocity (vs = amplitude r × frequency of motion ω). The stringent requirement clearly limits the applicability and usefulness of SFDs. This paper presents a computational physics model for a sealed-end SFD operating with a mixture and delivers predictions benchmarked against profuse laboratory test data. The model implements a Reynolds equation adapted for a homogeneous bubbly mixture, includes temporal fluid inertia effects, and uses physics-based inlet and outlet lubricant conditions through feed holes and PR slit, respectively. In the experiments for model validation, a SFD damper, 127 mm in diameter D, film land length L = 25.4 mm (L/D = 0.2), and radial clearance c = 0.371 mm, is supplied with an air in ISO VG2 oil bubbly mixture of known gas volume fraction (GVF), zero (pure oil) to 50% in steps of 10%. The mixture supply pressure varies from Ps = 2.06 bar-g (30 psig) to 6.20 bar-g (90 psig). Located in grooves at the top and bottom of the journal, a PR and an O-ring (OR) seal the film land. The OR does not allow any oil leakage or air ingestion; hence, the supplied mixture discharges through the PR slit into a vessel submerged within a large volume of lubricant. Dynamic load tests with a single frequency ω, varying from 10 Hz to 60 Hz, produce circular centered orbits (CCO) with amplitude r = 0.2c. The measurements record the exerted forces and journal motions and an analysis delivers force coefficients, damping and inertia, representative of the exerted frequency range. The model predicts the pressure field and evolution of the GVF within the film land and, in a simulated process replicating the experimental procedure, delivers representative force coefficients. For all Ps conditions, both predictions and tests show the SFD added mass coefficients significantly decrease as the inlet GVF (βs) increases. The experimentally derived damping coefficients do not show a significant change, except for tests with the largest concentration of air (βs = 0.5). The predicted damping differs by 10% with the test derived coefficient which does not readily decrease as the inlet GVF (βs) increases. The added mass coefficients, test and predicted, decrease with βs, both being impervious to the magnitude of supply pressure. The test PRSFD shows a quadrature stiffness due to the sliding friction between the PR being pushed against the journal. An increase in supply pressure exacerbates this unique stiffness that may impair the action of the squeeze film to dissipate mechanical energy. The comprehensive test results, first of their kind, demonstrate that accurate modeling of SFDs operating with air ingestion remains difficult as the flow process and the paths of its major components (air and liquid) are rather complex.


2004 ◽  
Vol 126 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Luis San Andre´s ◽  
Oscar De Santiago

Experimentally derived damping and inertia force coefficients from a test squeeze film damper for various dynamic load conditions are reported. Shakers exert single frequency loads and induce circular and elliptical orbits of increasing amplitudes. Measurements of the applied loads, bearing displacements and accelerations permit the identification of force coefficients for operation at three whirl frequencies (40, 50, and 60 Hz) and increasing lubricant temperatures. Measurements of film pressures reveal an early onset of air ingestion. Identified damping force coefficients agree well with predictions based on the short length bearing model only if an effective damper length is used. A published two-phase flow model for air entrainment allows the prediction of the effective damper length, and which ranges from 82% to 78% of the damper physical length as the whirl excitation frequency increases. Justifications for the effective length or reduced (flow) viscosity follow from the small through flow rate, not large enough to offset the dynamic volume changes. The measurements and analysis thus show the pervasiveness of air entrainment, whose effect increases with the amplitude and frequency of the dynamic journal motions. Identified inertia coefficients are approximately twice as large as those derived from classical theory.


Author(s):  
Luis San Andrés ◽  
Adolfo Delgado

The paper presents parameter identification measurements conducted on a squeeze film damper (SFD) featuring a nonrotating mechanical seal that effectively eliminates lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and dry-friction effects from the lubricant film and surfaces in contact, respectively. The test damper reproduces an aircraft application that must contain the lubricant for extended periods of time. The test damper journal is 2.54cm in length and 12.7cm in diameter, with a nominal clearance of 0.127mm. The damper feed end opens to a plenum filled with lubricant, and at its discharge grooved section, four orifice ports evacuate the lubricant. In earlier publications, single frequency force excitation tests were conducted, without and with lubricant in the squeeze film land, to determine the seal dry-friction force and viscous damping force coefficients. Presently, further measurements are conducted to identify the test system and SFD force coefficients using two sets of flow restrictor orifice sizes (2.8mm and 1.1mm in diameter). The flow restrictors regulate the discharge flow area and thus control the oil flow through the squeeze film. The experiments also include measurements of dynamic pressures at the squeeze film land and at the discharge groove. The magnitude of dynamic pressure in the squeeze film land is nearly identical for both sets of flow restrictors, and for small orbit radii, dynamic pressures in the discharge groove have peak values similar to those in the squeeze film land. The identified parameters include the test system damping and the individual contributions from the squeeze film, dry friction in the mechanical seal and structure remnant damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry-friction interaction at the mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion and entrapment and generates predicable force coefficients for the range of frequencies tested.


Sign in / Sign up

Export Citation Format

Share Document