Study on Accuracy of Heat Transfer Coefficient Determination in the Bearing Chamber for Gas Turbine Engine

2021 ◽  
Author(s):  
Illia Petukhov ◽  
Taras Mykhailenko ◽  
Sergiy Yepifanov ◽  
Oleg Shevchuk
Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

The transition-piece of a gas turbine engine is subjected to high thermal loads as it collects high temperature combustion products from the gas generator to a turbine. This generally produces high thermal stress levels in the casing of the transition piece, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the transition-piece life span and to assure safe operations. The present study aims to investigate the aero-thermal behaviour of a gas turbine engine transition-piece and in particular to evaluate working temperatures of the casing in relation to the flow and heat transfer situation inside and outside the transition-piece. Typical operating conditions are considered to determine the amount of heat transfer from the gas to the casing by means of CFD. Both conjugate approach and wall fixed temperature have been considered to compute the heat transfer coefficient, and more in general, the transition-piece thermal loads. Finally a discussion on the most convenient heat transfer coefficient expression is provided.


2020 ◽  
pp. 73-81
Author(s):  
Илья Иванович Петухов ◽  
Тарас Петрович Михайленко ◽  
Андрей Александрович Брунак ◽  
Сергей Валерьевич Епифанов ◽  
Артём Викторович Ковалёв ◽  
...  

The development of gas turbine technology is accompanied by an increase in temperatures, pressures, and airflow velocity in the gas path. Increasing operating cycle parameters for gas turbine engine complicates the tasks of ensuring the permissible temperature state of engine parts, requires improving the methods of their calculation and design. This fact fully applies bearing assemblies, especially those operating in a hot environment, and causes interest in the study of thermohydraulic processes in the bearing chamber, which determines the temperature state of the rotor parts. The necessity of pressurizing the seals leads to the presence of the oil-air mixture in the bearing chamber. A wide range of operating parameters, flow inhomogeneity, phase disequilibrium, and phase separation significantly complicate the mathematical description of processes in the bearing chamber, including the use of CFD-modeling. Therefore, considerable attention is paid to experimental research. The experimental results are used not only to verify mathematical models but also to obtain generalizing dependencies. Most often, the desired value is the heat transfer coefficient in the oil cavity of the support. The article deals with the heat transfer features in the near-wall zone of the gas-turbine engine bearing chamber which were associated with the presence of oil-air flow. Also, approaches to the experimental determination of the heat transfer coefficient were analyzed and an appropriate system for measuring the local temperatures of the media was formed. The values of the error of the experimental heat transfer coefficient and the degree of influence of the determining factors were estimated. The contribution of the non-uniformity of the temperature field in the walls of the chamber and the uncertainty in the value of the temperature of the flow core was determined. The advantages of using the averaged heat transfer coefficient for engineering calculations and the significant influence of the averaging method on its value were also shown. Averaging over the heat flux density corresponds most accurately to the tasks of such calculations, at which the total heat flux through the chamber walls does not change.


Author(s):  
Illia Petukhov ◽  
Taras Mykhailenko ◽  
Sergiy Yepifanov ◽  
Oleg Shevchuk

Abstract The heat transfer coefficient (HTC) is one of the key parameters that should be known at the stage of the bearing chamber design. This ensures safe temperature conditions for the lubrication oil and reliable operation of the gas turbine engine. The temperature gradient method is commonly used in experimental practice to determinate the HTC. The accuracy of the HTC determination is sensitive to changing of the bearing chamber operating conditions and should be analyzed at the stage of experimental studies planning. This paper presents a study on the accuracy of HTC determination when the external cooling of the bearing chamber is used to obtain the temperature difference sufficient for measurement. Three ways to reduce the relative error of the HTC determination in the bearing chamber were analyzed: i) decreasing the temperature measurement error; ii) decreasing the temperature of external cooling medium; iii) increasing the external heat transfer coefficient and contribution of wall thermal resistance optimization. For different operating conditions of the bearing chamber, the temperature of the outer wall that ensures the specified accuracy of the experimental HTC and the required parameters of the cooling medium were determined and recommended for practical implementation.


Author(s):  
David V. Roscoe ◽  
Richard C. Buggeln ◽  
Peter M. Munsell ◽  
F. C. Hsing

A CFD analysis of the cooling flow through a gas turbine engine low pressure turbine shaft is presented. Three cases are considered in which throughflow and rotation rate are varied. The primary objective of the analysis was to derive improved heat transfer coefficient information, over those obtainable via semi-empirical means. The coefficients so obtained were then used in a one-dimensional, time-dependent analysis for use in predicting shaft wall temperature throughout a snap acceleration phase of the engine. A second objective was to obtain insight into the flow structure within the shaft with a view to possible design input in future engine programs. Results presented include detailed velocity vector plots at select locations, heat transfer coefficient distributions for each case and finally, for Case 2 predicted wall temperature vs. time is shown in conjunction with engine test data.


Author(s):  
Gm S. Azad ◽  
Je-Chin Han ◽  
Robert J. Boyle

Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modern first stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1×106. A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. The heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1% case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.


2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


2021 ◽  
Author(s):  
Illia Petukhov ◽  
Taras Mykhailenko ◽  
Oleksii Lysytsia ◽  
Artem Kovalov

Abstract A clear understanding of the heat transfer processes in a gas turbine engine bearing chamber at the design stage makes it possible to properly design the lubrication and sealing systems and ensure the future bearing safe operation. The heat transfer coefficient (HTC) calculated based on the classical Newton-Richman equation is widely used to represent the heat transfer data and useful for the thermal resistance analysis. However, this approach is only formally applicable in the case of a two-phase medium. While there is a need to model a two-phase medium, setting the flow core temperature correctly in the Newton-Richman equation is an issue that is analyzed in this study. The heat from the flow core is transferred to the boundary of the oil film on the bearing chamber walls by an adjacent air and precipitating droplets. The analysis showed that droplet deposition plays a decisive role in this process and significantly intensifies the heat transfer. The main contribution to the thermal resistance of internal heat transfer is provided by the oil film. In this regard, the study considers the issues of the bearing chamber workflow modeling allowing to determine the hydrodynamic parameters of the oil film taking into account air and oil flow rates and shaft revolutions. The study also considers a possibility to apply the thermohydraulic analogy methods for the oil film thermal resistance determination. The study presents practical recommendations for process modeling in the bearing chamber.


Author(s):  
G. Paniagua ◽  
C. H. Sieverding ◽  
T. Arts

Advances in turbine-based engine efficiency and reliability are achieved through better knowledge of the mechanical interaction with the flow. The life-limiting component of a modern gas turbine engine is the high-pressure (HP) turbine stage due to the arduous environment. For the same reason, real gas turbine engine operation prevents fundamental research. Various types of experimental approaches have been developed to study the flow and in particular the heat transfer, cooling, materials, aero-elastic issues and forced response in turbines. Over the last 30 years short duration facilities have dominated the research in the study of turbine heat transfer and cooling. Two decades after the development of the von Karman Institute compression tube facility (built in the 90s), one could reconsider the design choices in view of the modern technology in compression, heating, control and electronics. The present paper provides first the history of the development and then how the wind tunnel is operated. Additionally the paper disseminates the experience and best practices in specifically designed measurement techniques to both experimentalists and experts in data processing. The final section overviews the turbine research capabilities, providing details on the required upgrades to the test section.


Sign in / Sign up

Export Citation Format

Share Document