When Metals and Microbes Meet \u2013 Preventing Microbial Corrosion in Oil and Gas Transmission Pipelines

2021 ◽  
Author(s):  
Lisa Gieg ◽  
Mohita Sharma ◽  
Jennifer Sargent ◽  
Trevor Place ◽  
Yin Shen
Author(s):  
Lisa M. Gieg ◽  
Mohita Sharma ◽  
Trevor Place ◽  
Jennifer Sargent ◽  
Yin Shen

Abstract Corrosion of carbon steel infrastructure in the oil and gas industry can occur via a variety of chemical, physical, and/or microbiological mechanisms. Although microbial corrosion is known to lead to infrastructure failure in many upstream and downstream operations, predicting when and how microorganisms attack metal surfaces remains a challenge. In crude oil transmission pipelines, a kind of aggressive corrosion known as under deposit corrosion (UDC) can occur, wherein mixtures of solids (sands, clays, inorganic minerals), water, oily hydrocarbons, and microorganisms form discreet, (bio)corrosive sludges on the metal surface. To prevent UDC, operators will use physical cleaning methods (e.g., pigging) combined with chemical treatments such as biocides, corrosion inhibitors, and/or biodispersants. As such, it necessary to evaluate the efficacy of these treatments in preventing UDC by monitoring the sludge characteristics and the microorganisms that are potentially involved in the corrosion process. The efficacies of a biocide, corrosion inhibitor, and biodispersant being used to prevent microbial corrosion in a crude oil transmission pipeline were evaluated. A combination of various microbiological analyses and corrosivity tests were performed using sludge samples collected during pigging operations. The results indicated that the combined treatment using inhibitor, biocide 1 and biodispersant was the most effective in preventing metal damage, and both growth-based and Next-Generation Sequencing approaches provided value towards understanding the effects of the chemical treatments. The efficacy of a different biocide (#2) could be discriminated using these test methods. The results of this study demonstrate the importance of considering and monitoring for microbial corrosion of crucial metal infrastructure in the oil and gas industry, and the value of combining multiple lines of evidence to evaluate the performance of different chemical treatment scenarios.


2001 ◽  
Vol 15 (10) ◽  
pp. 821-826 ◽  
Author(s):  
Yu N Saraev ◽  
L I Makarova ◽  
N V Kirilova ◽  
A V Kozlov ◽  
V V Rogacheva ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohor Chatterjee ◽  
Yu Fan ◽  
Fang Cao ◽  
Aaron A. Jones ◽  
Giovanni Pilloni ◽  
...  

AbstractMicrobiologically influenced corrosion (MIC) is recognized as a considerable threat to carbon steel asset integrity in the oil and gas industry. There is an immediate need for reliable and broadly applicable methods for detection and monitoring of MIC. Proteins associated with microbial metabolisms involved in MIC could serve as useful biomarkers for MIC diagnosis and monitoring. A proteomic study was conducted using a lithotrophically-grown bacterium Desulfovibrio ferrophilus strain IS5, which is known to cause severe MIC in seawater environments. Unique proteins, which are differentially and uniquely expressed during severe microbial corrosion by strain IS5, were identified. This includes the detection of a multi-heme cytochrome protein possibly involved in extracellular electron transfer in the presence of the carbon steel. Thus, we conclude that this newly identified protein associated closely with severe MIC could be used to generate easy-to-implement immunoassays for reliable detection of microbiological corrosion in the field.


Author(s):  
Douglas G. Stalheim ◽  
Govindarajan Muralidharan

The economical, environmental, and safe movement of gas and oil to the marketplace requires transmission pipelines to be designed to operate at higher pressures and/or with improved toughness over a variety of temperature ranges. To meet the higher strength and toughness specification requirements of these transmission pipelines, appropriate materials and processes must be used in their design and construction. This includes selection of appropriate alloy composition, processing routes, microstructure control, and cost. A continuous cooling transformation (CCT) diagram is a tool that can be used to select alloy composition and processing route in order to obtain a specific, desirable microstructure for transmission linepipe steels in a cost-effective manner. In the past, CCT diagrams were developed experimentally under laboratory conditions, thus requiring extensive time and effort. However, with the vast data available and improved computational tools, reasonably accurate computer generated CCT diagrams can be produced quickly. These computer generated diagrams can give the materials design engineer a reasonable understanding of the effect of subjecting a given alloy to various processing routes and hence the resultant microstructures. Since final microstructure is a key variable in determining the linepipe steel material properties, the chosen alloy/processing route and its effect on the final microstructure needs to be understood. This paper will discuss the role of CCT diagrams in the design of steels (cost, alloy, processing, and microstructure) for oil and gas transmission pipelines. Examples of computer generated CCT digrams for various API alloy designs are included.


2018 ◽  
Vol 11 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Ode Samson Chinedu ◽  
Okoro Emeka Emmanuel ◽  
Ekeinde Evelyn Bose ◽  
Dosunmu Adewale

Background: Thermally insulated subsea production and transmission systems are becoming more common in deep-water/ offshore operations. Premature failures of the insulation materials for these gas transmission pipelines have had significant operational impacts. The ability to timely detect these failures within these systems has been a very difficult task for the oil and gas industries. Thus, periodic survey of the subsea transmission systems is the present practice. In addition, a new technology called optic-fibre Distributed Temperature Sensing system (DTS) is now being used to monitor subsea transmission pipeline temperatures; but this technology is rather very expensive. Objective: However, this study proposed a model which will not only predict premature insulation failure in these transmission pipelines; but will also predict the section of the transmission line where the failure had occurred. Methods: From this study, we deduced that in gas pipeline flow, exit temperature for the system increases exponentially with the distance of insulation failure and approaches the normal operation if the failure occurs towards the exit of the gas pipe. This model can also be used to check the readings of an optic-fibre distributed temperature sensors. Result and Conclusion: After developing this model using classical visual basic and excel package, the model was validated by cross plotting the normal temperature profiles of the model and field data; and R-factor of 0.967 was obtained. Analysis of the results obtained from the model showed that insulation failure in subsea gas transmission pipeline can be predicted on a real-time basis by mere reading of the arrival temperature of a gas transmission line.


Author(s):  
Robert Torbin ◽  
William Leary ◽  
George Vradis

Much of the existing natural gas infrastructure was designed and built without pigging as an operational consideration. There are many physical obstacles in pipelines that make the passage of SMART pigs impossible. The most intractable obstacles include: • Elbows with tight bend radius. • Back to back combinations of elbows. • Partially ported values. • Reductions/expansions greater than two pipe sizes. The use of pigs is totally dependent on the availability of pressure to “push” the pig through the pipeline. Unfortunately, the operation of many utility owned transmission pipelines is at a pressure too low to support the operation of a conventional pig. Although most interstate pipelines are many miles long, many high consequence areas along transmission pipelines are usually extremely short. Many of these pipeline segments are only one to two miles in length with no installed local traps. With the advances in robotics and sensor technology, the Office of Pipeline Safety has recently endorsed the concept that all oil and gas transmission pipelines should be capable of 100 percent inspection. The cost to replace just unpiggable valves and sharp bends has been estimated at over $1.5 billion (gas only). Therefore, the ability to inspect unpiggable pipelines presents a formidable technical and financial challenge. The inspection of unpiggable pipelines requires the marriage of a highly agile robotic platform with NDE sensor technology operating as an autonomous system. Foster-Miller and PII are developing a robot that is essentially a battery powered, train-like platform. Both front and rear tractors propel the train in either the downstream or upstream direction. Like a train, the platform includes additional “cars” to carry the required payloads. The cars are used for various purposes including the NDE sensor module(s), the power supply, and data acquisition/storage components. The onboard distributed intelligence gives the platform the capability of an engineer steering the train through the complex pipe geometry. The robot is designed with a slender aspect ratio and the ability to change shape as required by the physical obstacle presenting itself. The MFL sensor module must also morph itself through the physical obstacles, and thus, will require some level of segmentation. The system requires a very simple launch and retrieval station that is significantly less expensive to deploy.


Author(s):  
Douglas G. Stalheim ◽  
Steven G. Jansto

Niobium’s role in the production of oil and gas transmission pipelines steels has gained significant importance in recent years. The economical movement of gas and oil to the marketplace from remote and rugged locations requires transmission pipelines to be designed to operate at higher pressures with improved toughness over a variety of temperature ranges. With the increased demand for energy resources continuing to grow, traditional plate mills, hot strip mills along with Steckel mills around the world are processing skelp for API pipe. The capabilities of these mills can be quite varied. Consequently, a variety of operational considerations and practices have put additional focus on Nb for its ability to retard recrystallization at elevated temperatures. This ability has added a new form of processing skelp for API pipe called High Temperature Processing or HTP. This new use of Nb in higher strength API oil and gas transmission pipeline steels allows a producer to create a ferrite/acicular ferrite microstructure without the traditional molybdenum alloy based design. The HTP Nb microalloy approach has benefits including reduced operating cost per ton, ease of rolling and welding, excellent low temperature toughness properties and high strength. This processing technique for API X70 and X80 is gaining acceptance as major pipeline projects are now applying this technology. In addition, X100 properties have been achieved with a combination of the traditional X80 alloy design and the newer employed HTP alloy design. This paper will discuss Nb’s role in meeting the increased strength requirements related to operating at higher pressures, improved low temperature toughness (TCVN > 200 J@−40 °C), microstructural demands and processing capability improvements for traditional plate, strip, and Steckel mill technology. The use of the new HTP concept in high strength API production will also be introduced.


Sign in / Sign up

Export Citation Format

Share Document