Role of Inlet Boundary Conditions on Fuel-Air Mixing at Supercritical Conditions

2021 ◽  
Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal
Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal

Abstract Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research for reliable modeling efforts. Boundary conditions for fuel injection are critical to accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with an assumed top hat profile and assumed turbulence levels. Past studies have shown that such simplified inlet boundary treatment has minimal effects on the results for fuel injection in the compressed liquid phase. However, the validity of this approach at supercritical fuel injection conditions has not been assessed so far. In this study, comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamic (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. Next, the model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.


2021 ◽  
pp. 1-22
Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal

Abstract Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research, particularly the boundary conditions for fuel injection are critical for accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with simplified velocity profiles and turbulence levels. This simplified inlet boundary treatment has minimal effects on results for conventional fuel injection conditions, however, the validity of this approach at supercritical conditions has not been assessed. Comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamic (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. The model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.


2019 ◽  
Vol 47 (6) ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Shaochen Zhao

Although previous researchers have demonstrated that people often prefer potential rather than achievement when evaluating other people or products, few have focused on the boundary conditions on this effect. We proposed that the preference for potential would emerge when individuals’ perception of economic mobility was high, but the preference for achievement would emerge among individuals with low perceptions of economic mobility. Our results showed that people paid more attention to the future (vs. the present) when their perception of economic mobility was high; this, in turn, promoted more favorable reactions toward potential (vs. achievement). Thus, we suggested circumstances under which highlighting a person’s potential for future success is effective and those when it is not effective. Moreover, we revealed the important role of individual perceptions regarding economic mobility in driving this effect.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Navid Shahangian ◽  
Damon Honnery ◽  
Jamil Ghojel

Interest is growing in the benefits of homogeneous charge compression ignition engines. In this paper, we investigate a novel approach to the development of a homogenous charge-like environment through the use of porous media. The primary purpose of the media is to enhance the spread as well as the evaporation process of the high pressure fuel spray to achieve charge homogenization. In this paper, we show through high speed visualizations of both cold and hot spray events, how porous media interactions can give rise to greater fuel air mixing and what role system pressure and temperature plays in further enhancing this process.


2021 ◽  
Author(s):  
Fanny Lhardy ◽  
Nathaelle Bouttes ◽  
Didier M. Roche ◽  
Ayako Abe-Ouchi ◽  
Zanna Chase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document