Design of Robust High-Speed Motion Controller for a Plant With Actuator Saturation

1998 ◽  
Vol 122 (3) ◽  
pp. 535-541 ◽  
Author(s):  
Hyun-Taek Choi ◽  
Bong Keun Kim ◽  
Il Hong Suh ◽  
Wan Kyun Chung

A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechanisms (PTOS) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element. In the proposed controller, DOB basically provides the chance to apply PTOS to nondouble integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input of PTOS and/or DOB, overall system stability cannot be guaranteed, which is first found and analyzed in this paper. To solve this problem, robust stability and internal stability conditions of DOB-based system are derived. It is also shown that DOB could violate the internal stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain that our two saturation handling methods, i.e., Additional Saturation Element (ASE) and Self Adjusting Saturation (SAS) are the equivalent solutions of saturation problem to maintain internal stability. The stability and performances of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system. [S0022-0434(00)01103-5]

2020 ◽  
Vol 65 (1) ◽  
pp. 1-19
Author(s):  
Djamel Rezgui ◽  
Mark H. Lowenberg

Despite current research advances in aircraft dynamics and increased interest in the slowed rotor concept for high-speed compound helicopters, the stability of autogyro rotors remains partially understood, particularly at lightly loaded conditions and high advance ratios. In autorotation, the periodic behavior of a rotor blade is a complex nonlinear phenomenon, further complicated by the fact that the rotor speed is not held constant. The aim of the analysis presented in this article is to investigate the underlying mechanisms that can lead to rotation-flap blade instability at high advance ratios for a teetering autorotating rotor. The stability analysis was conducted via wind tunnel tests of a scaled autogyro model combined with numerical continuation and bifurcation analysis. The investigation assessed the effect of varying the flow speed, blade pitch angle, and rotor shaft tilt relative to the flow on the rotor performance and blade stability. The results revealed that rotor instability in autorotation is associated with the existence of fold bifurcations, which bound the control-input and design parameter space within which the rotor can autorotate. This instability occurs at a lightly loaded condition and at advance ratios close to 1 for the scaled model. Finally, it was also revealed that the rotor inability to autorotate was driven by blade stall.


2014 ◽  
Vol 684 ◽  
pp. 375-380
Author(s):  
Deng Sheng Zheng ◽  
Jian Chen ◽  
D.F. Tao ◽  
L. Lv ◽  
Gui Cheng Wang

Tooling system for high-speed machining is one of the key components of high-end CNC machine , its stability and reliability directly affects the quality and performance of the machine. Based on the finite element method, developing a 3D finite model of high-speed machining tool system, studying on the stability of the high Speed machining tool from the natural frequency by the method of modal analysis. Analysis the amount of the overhang and clamping of the tooling , different shank taper interference fit and under different speed conditions, which affects the natural frequency of high-speed machining tool system. Proposed to the approach of improving system stability, which also provides a theoretical basis for the development of new high-speed machining tool system.


2011 ◽  
Vol 130-134 ◽  
pp. 970-975
Author(s):  
Xiang Long Wen ◽  
Cao Cao

In the high-speed, gyroscopic effects of the flywheel rotor greatly influence the rotor stability. The pole-zero points move to right of s-plane and the damping terms of the pole points become smaller. The stability of the system will get worse with the increasing of rotor speed when the traditional decentralized PD controller is used only. In the paper, a cross-feedback control with decentralized PD control is used for compensating gyroscopic effect. The simulation results show that the system stability is better using the cross-feedback control with decentralized PD control than using the traditional decentralized PD control.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
T. T. Le

An electrostatic suspension of silicon wafer using proximate time optimal control has been successfully developed. In this system, the movable electrodes which are supplied by constant voltage and actuated by the piezoelectric (PZT) actuator are used instead of stationary electrodes like previous systems. The changing of the gap length between movable electrodes and the suspended object will create varying capacitances that can control the electrostatic forces. To overcome the problem of actuator saturation of the piezo actuator, a proximate time optimal control is used to stabilize the system. The system stability is theoretically investigated using Lyapunov’s function. The constant voltage supplying to the electrode is an important parameter, and it is also determined. The paper presents series of the simulation and experimental results that prove completely suspension of 4-inch silicon wafer without any mechanical contact.


2013 ◽  
Vol 655-657 ◽  
pp. 526-530
Author(s):  
Gang Ma ◽  
Jun He ◽  
Xin Min Shen

Non-contacting gas film seal applies to the high speed working condition and a numerical method was presented for analyzing the effect of speed on the stability of cylinder gas film seal. The dynamics analysis model was established, solving the time-dependent Reynolds equation coupling with the dynamic equations. Through numerical simulation, the critical speed of cylinder gas film seal system and the diagram of critical mass versus rotor speed were obtained. The influence of the speed on dynamic stability was studied. The results show that the system stability becomes worse as rotor speed increases.


1996 ◽  
Vol 118 (1) ◽  
pp. 115-121 ◽  
Author(s):  
W. J. Chen

A direct numerical method for the determination of instability threshold and stability boundaries of flexible rotor-bearing systems is presented. The proposed procedure can also be used to improve the system stability by considering the design variables as operating parameters. The finite element method is utilized in the formulation of system equations of motion. The numerical algorithm is based on nonlinear optimization techniques. Two examples are presented to illustrate the feasibility, desirability, and ability of the proposed algorithm. A simple journal bearing system is used for the parametric study. An industrial high-speed compressor is employed to demonstrate the ability of this algorithm to deal with practical applications. The stability boundaries calculated from this algorithm are in agreement with the experimental results.


2015 ◽  
Vol 1 (1) ◽  
pp. 5-16
Author(s):  
John Ohoiwutun

Utilization of conventional energy sources such as coal, fuel oil, natural gas and others on the one hand has a low operating cost, but on the other side of the barriers is the greater source of diminishing returns and, more importantly, the emergence of environmental pollution problems dangerous to human life. This study aims to formulate the kinematics and dynamics to determine the movement of Solar Power Mower. In this study, using solar power as an energy source to charge the battery which then runs the robot. Design and research was conducted in the Department of Mechanical Workshop Faculty of Engineering, University of Hasanuddin of Gowa. Control system used is a manual system using radio wave transmitter and receiver which in turn drive the robot in the direction intended. Experimental results showed that treatment with three variations of the speed of 6.63 m / s, 8.84 m / s and 15.89 m / sec then obtained the best results occur in grass cutting 15.89 sec and high-speed cutting grass 5 cm. Formulation of kinematics and dynamics for lawn mowers, there are 2 control input variables, x and y ̇ ̇ 3 to control the output variables x, y and θ so that there is one variable redudant. Keywords: mobile robots, lawn mower, solar power


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


Sign in / Sign up

Export Citation Format

Share Document