Mechanical Properties of Flat Braided Composites With a Circular Hole

2000 ◽  
Vol 122 (4) ◽  
pp. 420-424 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two types of specimen were prepared. They are a braided flat bar with an integrally formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole. [S0094-4289(00)02604-9]

1999 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

Abstract In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two type of specimens were prepared. They are a braided flat bar with an integrally-formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole.


2008 ◽  
Vol 47-50 ◽  
pp. 592-595 ◽  
Author(s):  
Ming Hwa R. Jen ◽  
Yi Chun Sung ◽  
Yin Da Lai

To deal with the stringent operational demands the aerospace structural materials of light weight Aluminum alloy 2024 sheets and plies of carbon fibers reinforced thermoplastic matrix PEEK were used to sustain at least 80% of their mechanical properties at elevated temperature. The addition of nanoparticles SiO2 can enhance the composite laminate strength and stiffness. Also, Al 2024 sheets were treated by an anodic method of electroplating to increase surface roughness to achieve perfectly bonding with matrix PEEK. Then, the modified diaphragm curing process was adopted to make the innovative hybrid Al/APC-2 hybrid nanocomposite laminates. Next, both static tensile and fatigue tests were conducted at elevated temperature to obtain the mechanical properties, lives and failure mechanisms to verify the improved features of hybrid specimens. From tensile tests the mechanical properties of Al/APC-2 [4Al/0/±45/90/2Al]s hybrid laminates at elevated temperature were obtained. Although there is a big drop at 150°C, the reduction in strength from RT to 125°C is generally not significant. The longitudinal stiffness is almost unchanged at elevated temperature. After cyclic tension-tension (T-T) tests, the positions of received S-N curves go downwards as temperature rising. No delaminations were found in both tests. If the applied stress normalized by the ultimate strength at corresponding temperature, the normalized S-N curves are closer with some curve positions reversed. Significant improvement of manufacturing and enhancement of mechanical properties in hybrid laminates were achieved finally.


Author(s):  
Philipp Andreazza ◽  
Andreas Gericke ◽  
Knuth-Michael Henkel

AbstractArc brazing with low-melting copper-based filler materials, which has long been established and standardized in the thin sheet sector, offers numerous advantages in the processing of predominantly electrolytically galvanized steel structures. In steel and shipbuilding, on the other hand, equipment parts made of thick steel sheets are hot-dip galvanized at low cost and with good corrosion-inhibiting properties. Quality welding of such constructions is not possible without special precautions such as removing the zinc layer and subsequent recoating. With regard to greater plate thicknesses, arc brazing was analyzed in these investigations as an alternative joining method with regard to its suitability for practical use. Within the scope of the investigations, CuSi3Mn, CuMn12Ni2, and four different aluminum bronzes were examined on different sheet surface conditions with regard to the geometrical and production parameters. This was carried out by build-up and connection brazing, executed as butt and cross joints. Quasi-static tensile tests and fatigue tests were used to assess the strength behavior. In addition, metallographic analyses are carried out as well as hardness tests. The suitability for multi-layer brazing and the tendency to distortion were also investigated, as well as the behavior of arc brazed joints under corrosive conditions.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


Author(s):  
Seyed M. Allameh ◽  
Avery Lenihan ◽  
Roger Miller ◽  
Hadi Allameh

Abstract Additive manufacturing technology has matured enough to produce real industrial components. A newer method of 3D printing is the deposition of molten metal beads using a MIG weld torch. This involves a 3D printer equipped with a MIG torch layering the metals in desired shapes. It allows the fabrication of components made of MIG weld wires, currently available from various elements including Cu, Al, steel and alloys. Some of these structures made by 3D welding will have applications in critical load bearing conditions. The reliability of such components will be vital in applications where human lives are at stake. Tensile tests are conducted to verify the required strength of the fabricated parts which will undergo monotonic loading; however, fatigue tests are required for cases where cyclic loading will take place. Conventional tensile and fatigue testing requires macro-scale samples. With MIG welding, it is possible to make thin-walled structures. Fatigue testing on samples extracted from thin walls is made possible by microtesting. This study is focused on the mechanical properties of 3D welded structures made from MIG welding wires. Our earlier results showed orientation dependence of mechanical properties in 3D welded structures. They also showed the effect of substrates in expression of the orientation dependence. Welding on metal substrate produces weld beads that are harder at the substrate interfacial area. However, for structures welded on ceramics, the opposite is true. They exhibit a softer substrate interfacial area and a relatively harder top. Our newer results show fatigue properties of structures made by 3D welding. Microsamples measuring 0.2 mm × 0.2 mm × 1.0 mm were extracted from metal beads using a CNC mill along with an EDM. The contours of the samples were machined by milling and the back side was cut by electro discharge machining. Specimens were then polished to the desired size and mounted in the grippers of an E1000 Instron load frame. WaveMatrix® application software from Instron was used to control the machine and to obtain testing data. Fatigue tests were performed, and life cycles were determined for various stress levels up to over 5 million cycles. The preliminary results of tensile tests of these samples show strength levels that are comparable to those of parent metal, in the range of 600–950MPa. Results of fatigue tests show high fatigue lives associated with relatively high stresses. The preliminary results will be presented and the implications of the use of 3D welded rebar in 3D printing of reinforced concrete structures will be discussed.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 965 ◽  
Author(s):  
Angela Moreno Bazán ◽  
María de las Nieves González ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez

In this work 144 reinforcing bars of high-ductility steel named B500SD were subjected to an accelerated corrosion treatment and then tested under tension at different loading speeds in order to assess the effect of corrosion on the ductility properties of the rebars. Results showed that the bars with a corrosion level as low as the one reducing the steel mass by 1% gave rise to a significant degradation on the ductility properties when a high loading speed was applied in tensile tests. In that case, the equivalent steel concept is useful to reduce the destabilising effect. Thus, the research significance lies in the assessment of the influence of the loading speed at which the tensile test is performed for the reinforcement bars that largely depends of the ductility criteria used.


2008 ◽  
Vol 385-387 ◽  
pp. 849-852 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Francesco W. Panella ◽  
Antonio Squillace

Al-Li alloys are characterized by a strong anisotropy in mechanical properties and microstructure with respect to the rolling direction. Plates of 2198 Al-Li alloy were friction stir welded by employing maximum rotation speed: 1000 rev/min and welding speed of 80 mm/min, both in parallel and orthogonal directions with respect to the rolling one. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests performed with a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz loading, were conducted in axial control mode with R(σmin/σmax)=0.33, for all the welding and rotating speed conditions. The fatigue crack propagation experiments were performed by employing single edge notched specimens.With the aim to characterize the weld performances, both the microstructure evolution at jointed cross sections, related to the welding variables, and the fractured surfaces were respectively analyzed by means of optical and scanning electron microscopy.


2015 ◽  
Vol 1127 ◽  
pp. 1-8
Author(s):  
Martin Rund ◽  
Josef Volák ◽  
Miroslava Šindelářová

The evaluation of actual mechanical properties of the in-service structures after some time of operation or determination of local properties for detailed FEM simulation yields the necessity to obtain relevant material data with high accuracy from small volume of the experimental material. Therefore, non-destructive or semi-destructive techniques using small size samples are being developed. The use of small-scale samples also enables the evaluation of material properties in various locations of tested component; for example, the mechanical properties of the individual regions of welds, local properties determination for properties anisotropy assessment and properties determination in cases when small volume of the experimental material is available e.g. residual service life assessment of in service components, bulk nanostructured materials… There are shown results of small size tensile tests (M-TT) and small sized fatigue tests (SFT). In the case of small size specimens testing a machining becomes more pronounced that in the case of standard sized specimens. The current study brings information on the machining influence on the expected results obtained by small size specimens in the case of quasi-static tensile tests and fatigue test.


2016 ◽  
Vol 704 ◽  
pp. 44-52 ◽  
Author(s):  
Alexandra Amherd Hidalgo ◽  
Thomas Ebel ◽  
Wolfgang Limberg ◽  
Florian Pyczak

One of the challenges in PM Ti alloys is to control the impurities level. Oxygen affects the microstructure and the mechanical properties of titanium alloys. Ti-6Al-7Nb is a promising alloy to use in PM due to its outstanding biocompatibility and mechanical properties required for load bearing medical implants. In this work, the influence of the impurities content on the ductility, fatigue resistance and microstructure of Ti-6Al-7Nb alloy processed by metal injection moulding was examined. Tensile and fatigue specimens were manufactured using Ti-6Al-7Nb gas atomized powder. Depending on the thermal treatment time, various oxygen contents were introduced into the specimens. The resulting oxygen content was determined by melt extraction technique. Tensile tests and high cycle four-point bending fatigue tests at room temperature were performed. First studies about the effect of oxygen content on crack initiation and propagation were done by the observation of microstructures and fractured surfaces using light and electron microscopy (SEM).


2014 ◽  
Vol 59 (4) ◽  
pp. 1637-1640 ◽  
Author(s):  
J. Dworecka ◽  
E. Jezierska ◽  
K. Rozniatowski ◽  
W. Swiatnicki

Abstract The aim of the work was to produce a nanobainitic structure in the commercial bearing steel - 100CrMnSi6-4 and to characterize its structure and mechanical properties. In order to produce this structure the austempering heat treatment was performed, with parameters that have been selected on the basis of dilatometric measurements of phase transformation kinetics in steel. The heat treatment process was performed in laboratory as well as in industrial furnaces. The obtained structure was characterized using transmission electron microscopy. In order to investigate the effect of the microstructure parameters on the material’s mechanical properties, the hardness, impact strength and static tensile tests have been conducted.


Sign in / Sign up

Export Citation Format

Share Document