A Two-Dimensional Numerical Wave Flume—Part 1: Nonlinear Wave Generation, Propagation, and Absorption

2001 ◽  
Vol 123 (2) ◽  
pp. 70-75 ◽  
Author(s):  
S. F. Baudic ◽  
A. N. Williams ◽  
A. Kareem

A numerical model is developed to simulate fully nonlinear transient waves in a semi-infinite, two-dimensional wave tank. A mixed Eulerian-Lagrangian formulation is adopted and a high-order boundary element method is used to solve for the fluid motion at each time step. Input wave characteristics are specified at the upstream boundary of the computational domain using an appropriate wave theory. At the downstream boundary, a damping region is used in conjunction with a radiation condition to prevent wave reflections back into the computational domain. The convergence characteristics of the numerical model are studied and the numerical results are validated through a comparison with previous published data.

Author(s):  
Zach Ballard ◽  
Brian P. Mann

The horizontal and vertical motions of a nonlinear spherical buoy, excited by synthetic ocean waves within a wave flume, is numerically and experimentally investigated. First, fluid motion in the wave tank is described using Airy's theory, and the forces on the buoy are determined using a modified form of Morison's equation. The system is then studied statically in order to determine the effects of varying system parameters. Numerical simulations then use the governing equations to compare predicted motions with experimentally observed behavior. Additionally, a commonly used linear formulation is shown to be insufficient in predicting buoy motion, while the nonlinear formulation presented is shown to be accurate.


Author(s):  
Dakui Feng ◽  
Xianzhou Wang ◽  
Zhiguo Zhang ◽  
Yanming Guan

The catamaran is composed of two monohulls, the flow fields between the inner and outer side of each monohull are different, the bodies must be considered as lifting bodies. So it is very important to know the lifting effect on hydrodynamic characteristics of catamaran hull at the preliminary design stage of its hull form. The pressure Kutta condition is imposed on the trailing-surface of the lifting body by determining the dipole distribution, which generates required circulation on the lifting part. The method is based on Green’s second theorem. Rankine Sources and dipoles are placed on boundary surfaces. Time-stepping scheme is adopted to simulate the wave generated by the catamaran with a uniform speed in deep water. The values of the potential and position of the free surface are updated by integrating the nonlinear Lagrangian free surface boundary conditions for every time. A moving computational window is used in the computations by truncating the fluid domain (the free surface) into a computational domain. The grid regeneration scheme is developed to determine the approximate position of the free surface for the next time step. An implicit implement of far field condition is enforced automatically at the truncation boundary of the computational window, Radiation condition is satisfied automatically. The influences on the wave making resistance of the distance between the twin hulls of the Wigley catamaran on the hydrodynamic characteristics are discussed. The numerical results are presented compared with the existing simulation result. The method can be used to simulate the flow fields around the foil near free surface.


10.29007/9bfr ◽  
2018 ◽  
Author(s):  
Xuan Wang ◽  
Serene Hui Xin Tay ◽  
Vladan Babovic

Numerical model is an indispensable tool for understanding oceanographic phenomena and resolving associated physical processes. However, model error cannot be avoided due to limitations such as underlying assumption, insufficient information of bathymetry or boundary condition and so on. Data assimilation technique thus becomes an effective and essential tool to improve prediction accuracy. Updating of output is an efficient way to correct the model, but it is often carried out locally at specific locations in the model domain where measurement is available. In this study, instead of correcting output of numerical model locally, we propose to combine local correction and input correction to update open boundary of numerical model. The open boundary condition is corrected through spatial interpolation algorithm based on nearby observation in the hindcast period. Then the local forecast at measured location is distributed using the same interpolation scheme to update the boundary in the forecast period. Such boundary correction not only explores the variation in the future time step from the input updating but also allows the backbone physics embedded in numerical model to resolve the hydrodynamics in the entire computational domain.


2013 ◽  
Vol 8 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Shojiro Kataoka ◽  
◽  
Masahiro Kaneko

Wave forces acting on the superstructures of two highway bridges affected by the 2011 Tohoku tsunami, the Shin-Aikawa Bridge and the Yanoura Bridge, are estimated combining 2-D FDM and a numerical wave flume (CADMAS-SURF) analysis. The superstructure of the Shin-Aikawa Bridge was washed out and swept 500 m away by the backwash. The Yanoura Bridge suffered no damage even though it was completely submerged in the tsunami. Time histories of the tsunami wave height and flow velocity are calculated using 2-D FDM, based on the nonlinear long wave theory. Lateral and uplift forces acting on the superstructures due to the simulated tsunami are then analyzed by the numerical wave flume. Comparisons between the analytical wave forces and corresponding loading capacities account for the differences in damage to the two bridges.


1973 ◽  
Vol 13 (06) ◽  
pp. 311-320 ◽  
Author(s):  
F. Sonier ◽  
O. Ombret

Abstract This paper describes a two-dimensional three-phase numerical model for simulating two- or three-phase coning behavior. The model is fully implicit with respect to all variables and uses the simultaneous solution of the different equations describing multiphase flow. For determining well flow rates from all blocks communicating with the well, particular attention has been paid to the well boundary condition, which is considered to be a physical boundary. The mathematical expression of these well conditions enables flow rates to be calculated in a perfectly implicit manner and thus makes the model very stable so that the computational error in time is very small. The model described is appreciably different in this respect from previous models in which the well is represented by source points and in which the flour terms are calculated by using various simplifications. The results of several tests are presented. The model was checked by the simulation of several water coning cases that had previously been studied on a physical model. Four examples are given here. In these examples, the boundary influx conditions and fluid mobility ratio are made to vary. One of them illustrates the care that must be taken when using simplified solution schemes for the boundary conditions. Introduction Multiphase numerical models have usually employed finite-difference approximations in which relative permeabilities are evaluated explicitly at the beginning of each time step. But simulators of this type are not capable of solving problems characterized by high flow velocities and such phenomena as well coning, except perhaps at phenomena as well coning, except perhaps at extremely high cost. Recently, some papers were published describing a method that employs semi-implicit relative permeabilities and uses the simultaneous solution of multiphase equations. This method is very efficient. In these simulators, the well is represented by source points, and flow rate terms are calculated by using various simplifications (mobility or potential methods). potential methods). This paper describes a new numerical coning model. The numerical part of the model is similar to that in the latest models, but its representation of wellbore conditions is quite different and more nearly expresses physical phenomena caused by end effects. The well is represented full-scale and not by source points. Furthermore, so as not to partially screen out wellbore conditions, the partially screen out wellbore conditions, the producing interval, even if it is small, may be producing interval, even if it is small, may be advantageously represented by several layers. Any condition may be specified for the external boundaries. All the leading physical parameters are treated semi-implicitly. When a flow rate is imposed on the well, taking into account the well-wall boundary conditions, the calculation of production terms is fully implicit. This calculation is iterative, but at almost each time step a simple algorithm enables a direct solution to be obtained. The results of numerous simulations are presented. Studies on physical models have demonstrated the full validity of the numerical model. The simulation of actual field cases shows that the model is very efficient. CONING MODEL The numerical model described in this paper is a two-dimensional one with radial symmetry. A compressible three-phase system is considered, with possible exchange between the gas and oil phases independently of the composition. phases independently of the composition. The introduction of Darcy's law into the continuity equation for each of the three fluids leads to a system of partial differential equations. SPEJ p. 311


Author(s):  
Yunpeng Zhao ◽  
Chunwei Bi ◽  
Guohai Dong ◽  
Changping Chen ◽  
Yucheng Li

A two-dimensional numerical wave flume is established based on the finite-volume method. The movement border method is adopted as a wave generator at one end of the flume. The volume of fluid (VOF) method is used to track the wave surface. In the numerical simulation, the plane net is simplified as porous-media model. The coefficients of the porous media are determined by the least squares method. In this way, the porous-media model will has the same pressure drop with the fishing net. To validate the numerical model, the numerical results are compared with the data obtained from corresponding physical model tests. It is found that the numerical results are in good agreement with the corresponding experimental data. Using the proposed numerical model, wave propagation through a plane net with different net solidities, different attack angles as well as two nets with different spacing distances are investigated. The impacts of the wave height and wavelength on the wave propagation through the plane net are also discussed.


1984 ◽  
Vol 106 (2) ◽  
pp. 160-168 ◽  
Author(s):  
C. H. Luk

This paper presents a theoretical analysis of an in-plane ice sheet vibration problem due to a circular cylindrical structure moving in the plane of an infinite ice sheet, and computes the ice forces exerted on the structure as the motion occurs. The basic equations are derived from two-dimensional elastic wave theory for a plane stress or plane strain problem. The ice material is treated as a homogeneous, isotropic and linear elastic solid. The resulting initial and boundary value problems are described by two wave equations. One equation governs the ice motion associated with longitudinal wave propagation, and the other governs propagation of transverse waves. The equations are subject to 1) either a fixed or a frictionless boundary condition at the ice structure interface, and 2) a radiation condition at large distance from the structure to ensure the existence of only outward traveling elastic waves. The governing equations are then solved by 1) Fourier transforms, or 2) Laplace transforms, depending on the problem. Closed-form solutions are obtained in terms of Bessel functions. Plots are provided for estimating the ice added mass, the damping, and the unit function response for a circular cylindrical structure vibrating in the horizontal plane of an infinite ice sheet.


Sign in / Sign up

Export Citation Format

Share Document