Effect of Biodiesel Utilization of Wear of Vital Parts in Compression Ignition Engine

2003 ◽  
Vol 125 (2) ◽  
pp. 604-611 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines, e.g., poor atomization characteristics, ring-sticking, injector coking, injector deposits, injector pump failure, and lube oil dilution by crank-case polymerization. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Linseed oil methyl ester (LOME) was prepared using methanol for long-term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel oil. A blend of 20 percent was selected as optimum biodiesel blend. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on 20 percent biodiesel blend and diesel oil, respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The physical wear of various vital parts, injector coking, carbon deposits on piston, and ring sticking were found to be substantially lower in case of 20 percent biodiesel-fuelled engine. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy for measurement of various wear metal traces present. AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

2003 ◽  
Vol 125 (3) ◽  
pp. 820-826 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in a compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil, respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for a biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for a biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in a biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in an SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning electron microscopy was conducted on the surfaces exposed to wear. The disk and pin using 20% biodiesel blend as the lubricating oil showed lesser damage compared to the one subjected to diesel oil as the lubricating fluid, confirming additional lubricity of biodiesel.


Author(s):  
Avinash Kumar Agarwal ◽  
Jayashree Bijwe ◽  
L. M. Das

Abstract Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning Electron microscopy was conducted on the surfaces exposed to wear. The disc and pin using 20% biodiesel blend as lubricating oil showed lesser damage compared to the one subjected to diesel oil as lubricating fluid, confirming additional lubricity of biodiesel.


Author(s):  
Avinash Kumar Agarwal

Biodiesel is an alternative fuel derived from vegetable oils by modifying their molecular structure through transesterification process. Linseed oil methyl ester (LOME) was prepared using methanol in the presence of potassium hydroxide as catalyst. Use of linseed oil methyl ester in compression ignition engines was found to develop a very compatible engine-fuel system with lower emission characteristics. Two identical engines were subjected to long-term endurance tests, fuelled by optimum biodiesel blend (20% LOME) and diesel oil respectively. Various tribological studies on lubricating oil samples drawn at regular intervals for both engines were conducted in order to correlate the comparative performance of the two fuels and the effect of fuel chemistry on lubricating oil performance and life. A number of tests were conducted in order to evaluate comparative performance of the two fuels such as density measurement, viscosity measurements, flash point determination, moisture content determination, pentane and benzene insolubles, thin layer chromatography, differential scanning calorimetry etc. All these tests were used for indirect interpretation of comparative performance of these fuels. Biodiesel fuels performance is found to be superior to that of diesel oil and the lubricating oil life is found to have increased, while operating the engine on this fuel.   NOTE: This paper was presented at the ASME 2003 Internal Combustion Engine Division Spring Technical Conference but was printed in the ASME 2003 Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference proceedings, pages 427–441. It should appear under the Lubrication and Friction heading.


2018 ◽  
Vol 17 (2) ◽  
pp. 33
Author(s):  
L. F. Micheli ◽  
D. L. Módolo ◽  
L. E. R. Pereira

The transesterification of vegetable oils results in methyl esters of fatty acid, known as biodiesel. This one presents similar features of diesel oil, such as cetane number, specific weight, heat of combustion and air-fuel ratio. However, arising problems from its higher viscosity leads to a poor spraying by the fuel injectors and so to a low-grade combustion, causing formation of undesirable deposits inside the engine, changes in the properties of the lubricating oil and in the composition of the exhaust gas. Owing to this issue, it is necessary to study an additive able to make biodiesel characteristics more appropriate to be used in compression ignition engines, as well as a monitoring of changes in exhaust gas composition. The chosen additive was d-limonene, a monocyclic terpene obtained as a byproduct of citriculture. This paper presents the preliminary results obtained from the tests in a stationary diesel engine fuelled with mixtures of diesel-biodiesel and d-limonene, in different concentrations, comparing to regular diesel fuel. Although it was used in low concentrations, the additive was efficient in the reduction of hydrocarbons, carbon monoxide and opacity.


Sign in / Sign up

Export Citation Format

Share Document