Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study

2002 ◽  
Vol 124 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Alexis R. Abramson ◽  
Chang-Lin Tien ◽  
Arun Majumdar

Molecular dynamics simulations are used to examine how thermal transport is affected by the presence of one or more interfaces. Parameters such as film thickness, the ratio of respective material composition, the number of interfaces per unit length, and lattice strain are considered. Results indicate that for simple nanoscale strained heterostructures containing a single interface, the effective thermal conductivity may be less than half the value of an average of the thermal conductivities of the respective unstrained thin films. Increasing the number of interfaces per unit length, however, does not necessarily result in a corresponding decrease in the effective thermal conductivity of the superlattice.

2012 ◽  
Vol 501 ◽  
pp. 64-69 ◽  
Author(s):  
Yan He ◽  
Yuan Zheng Tang ◽  
Man Ding ◽  
Lian Xiang Ma

Normal thermal conductivity of amorphous and crystalline SiO2nano-films is calculated by nonequilibrium molecular dynamics (NEMD) simulations in the temperature range from 100 to 700K and thicknesses from 2 to 6nm. The calculated temperature and thickness dependences of thermal conductivity are in good agreement with previous literatures. In the same thickness, higher thermal conductivity is obtained for crystalline SiO2nano-films. And more importantly, for amorphous SiO2nano-films, thickness can be any direction of x, y, z-axis without effect on the normal thermal conductivity, for crystalline SiO2nano-films, the different thickness directions obtain different thermal conductivity results. The different results of amorphous and crystalline SiO2nano-films simply show that film thickness and grain morphology will cause different effects on thermal conductivity.


2011 ◽  
Vol 221 ◽  
pp. 598-603 ◽  
Author(s):  
Lian Xiang Ma ◽  
Yuan Zheng Tang ◽  
Yan He

Thermal conductivity of L-J potential solid argon nano-films is calculated by equilibrium molecular dynamics (EMD) and nonequilibrium molecular dynamics (NEMD) simulations in the temperature range from 30K to 80K. A LAMMPS computer program has been modified based on classical molecular dynamics. It can be directly used to calculate the thermal conductivity of nano-films in the direction perpendicular to the film plane. Thermal conductivity calculated from this program is compared with experimental data. It is found that this computer program is competent to calculate the thermal conductivity of solid nano-films. It is also found that thermal conductivity is dependent on the simulation temperature and film thickness.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.


Author(s):  
Zhiting Tian ◽  
Sang Kim ◽  
Ying Sun ◽  
Bruce White

The phonon wave packet technique is used in conjunction with the molecular dynamics simulations to directly observe phonon scattering at material interfaces. The phonon transmission coefficient of nanocomposites is examined as a function of the defect size, thin film thickness, orientation of interface to the heat flow direction. To generalize the results based on phonons in a narrow frequency range and at normal incidence, the effective thermal conductivity of the same nanocomposite structure is calculated using non-equilibrium molecular dynamics simulations for model nanocomposites formed by two mass-mismatched Ar-like solids and heterogeneous Si-SiCO2 systems. The results are compared with the modified effective medium formulation for nanocomposites.


2010 ◽  
Author(s):  
Xueming Yang ◽  
Albert C. To ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
Vai Pan Iu ◽  
...  

Author(s):  
Bo Qiu ◽  
Hua Bao ◽  
Xiulin Ruan

In this paper, thermoelectric properties of bulk PbTe are calculated using first principles calculations and molecular dynamics simulations. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is first employed to calculate the PbTe band structure. The transport coefficients (Seebeck coefficient, electrical conductivity, and electron thermal conductivity) are then computed using Boltzmann transport equation (BTE) under the constant relaxation time approximation. Interatomic pair potentials in the Buckingham form are also derived using ab initio effective charges and total energy data. The effective interatomic pair potentials give excellent results on equilibrium lattice parameters and elastic constants for PbTe. The lattice thermal conductivity of PbTe is then calculated using molecular dynamics simulations with the Green-Kubo method. In the end, the figure of merit of PbTe is computed revealing the thermoelectric capability of this material, and the multiscale simulation approach is shown to have the potential to identify novel thermoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document