Residual Stress of Thin-Wall Pipe Subjected to Axisymmetric Plastic Expansion

2004 ◽  
Vol 126 (3) ◽  
pp. 300-306
Author(s):  
Norimasa Chiba ◽  
Yuji Ishida ◽  
Nagahisa Ogasawara ◽  
Hiroshi Ito ◽  
Kunio Enomoto ◽  
...  

A straight pipe was expanded at one end by inserting a rigid disk. The residual stress measured at the inner surface shows a strong tensile peak beyond the region where the pipe was directly expanded by the insertion of the disk. The reason the residual stress reaches its peak at a location further into the pipe is discussed based on a FE analysis. The residual stress was found to reach its tensile peak at the plastic region front that was developed during the pipe expansion. A simple formula for identifying the tensile peak location is also proposed.

Author(s):  
Norimasa Chiba ◽  
Yuji Ishida ◽  
Nagahisa Ogasawara ◽  
Hiroshi Ito ◽  
Kunio Enomoto ◽  
...  

A straight thin-wall pipe was plastically expanded at one end in the radial direction by inserting a rigid disk. The residual stress measured after withdrawal of the disk at the inner surface in the hoop and in the longitudinal direction shows a strong tensile peak beyond the region where the pipe was directly expanded by the insertion of the disk. The reason why the residual stress reaches its peak at the location far inward of the pipe, not in the region where the pipe was directly expanded, is discussed. From the FE analysis, it is concluded that the residual stress reaches its tensile peak on the inner surface at the plastic region front that was developed during the pipe expansion, and a simple formula for the tensile peak location is proposed. The similarities and differences between the residual stress distribution of the thin-wall pipe and the thick-wall pipe are discussed.


2014 ◽  
Vol 887-888 ◽  
pp. 1328-1332
Author(s):  
Wang Biao Qiu ◽  
Wei Xing Chen

The article based on different frequency pulse equiponderance electromagnetic destressing comparison experiment, using vertical optical measurement to survey the changes of bearing ferrules size, study the difference between the effect of different frequency electromagnetic in removing residual stress, find the frequency of magnetic treatment pulse that help to maintain the stability of the thin-wall bearing collars' size, effectively improve the cycle of bearing ferrules process .


Author(s):  
Tae-young Ryu ◽  
J. B. Choi ◽  
Kyoung S. Lee

For decades, the PWSCC on the penetration nozzles like BMI and CEDM nozzles are widely occurred all around the world. The PWSCC is dependent on the tensile stress condition, specific materials and chemical environment. Therefore, to evaluate the severity of the PWSCC, prediction of the welding residual stress on the J-groove welding part in the penetration nozzles is essential. Residual stress can be measured by using experimental methods like deep-hole drilling and X-ray diffraction, etc. However, the results of experimental methods are quite doubtable and these methods are hard to apply on the actual equipment. Therefore, computational approach like the FE analysis has been considered. The FE analysis results are very sensitive to the FE model density and analysis conditions. In this paper the optimized FE model for the residual stress analysis will be developed in the case of CEDM penetration nozzle. The optimized parameters contains bead number and mesh density. The bead numbers along the longitudinal and circumferential directions are considered and the mesh density in each the bead is also considered. The model will be verified by numerical error control.


2019 ◽  
pp. 285-290
Author(s):  
Jiing-Yih Lai ◽  
Jia-Ying Zhong ◽  
An-Sheng Hsiao ◽  
Pei-Pu Song ◽  
Yao-Chen Tsai ◽  
...  

Author(s):  
Jeffrey D. Cochran ◽  
Trace P. Silfies ◽  
Jonathan D. Dobis

The manufacture of low density polyethylene (LDPE) by radical polymerization regularly subjects components to extreme pressures exceeding 20 ksi and, possibly, to runaway decomposition reactions with temperatures exceeding 1500 °F and pressures above 30 ksi. Components subject to such extreme conditions are often autofrettaged to induce a beneficial residual stress distribution that retards crack growth and extends fatigue life. Three samples of autofrettaged tubes extracted from these components are examined here. Only one of these samples is known to have been exposed to multiple decompositions while in service. Measurements of the remaining residual stress were taken for each of these tube samples, and a number of other metallurgical tests were performed. The results show that the tube experiencing decompositions lost almost all of the beneficial residual stress induced by autofrettage and actually has a large, detrimental tensile stress at the inner surface. Corresponding to this is a band of embrittled material with a significantly altered microstructure that was most likely caused by thermal excursions. The tubes that experienced no decompositions showed no such alterations, and their residual stress distributions were relatively intact. An FFS assessment of crack-like flaws was performed on these tubes in accordance with API 579-1/ASME FFS-1 in order to determine the effect of this loss of residual stress on remaining life and quantify this loss in terms of a damage parameter.


2003 ◽  
Vol 125 (3) ◽  
pp. 248-252 ◽  
Author(s):  
Joseph Perry ◽  
Jacob Aboudi

In the optimal design of a modern gun barrel, there are two main objectives to be achieved: increasing its strength-weight ratio and extending its fatigue life. This can be carried out by generating a residual stress field in the barrel wall, a process known as autofrettage. It is often necessary to machine the autofrettaged cylinder to its final configuration, an operation that will remove some of the desired residual stresses. In order to achieve a residual stress distribution which is as close as possible to the practical one, the following assumptions have been made in the present research on barrel analysis: A von Mises yield criterion, isotropic strain hardening in the plastic region in conjunction with the Prandtl-Reuss theory, pressure release taking into consideration the Bauschinger effect and plane stress conditions. The stresses are calculated incrementally by using the finite difference method, whereby the cylinder wall is divided into N-rings at a distance Δr apart. Machining is simulated by removing rings from both sides of the cylindrical surfaces bringing the cylinder to its final shape. After a theoretical development of the procedure and writing a suitable computer program, calculations were performed and a good correlation with the experimental results was found. The numerical results were also compared with other analytical and experimental solutions and a very good correlation in shape and magnitude has been obtained.


1973 ◽  
Vol 17 ◽  
pp. 354-370 ◽  
Author(s):  
Chester F. Jatczak ◽  
Harald H. Boehm

AbstractThe effects of various combinations of divergence, receiving and Soller slits on x-ray measurements were investigated for Siemens-Halske and General Electric diffractometers. Influences of the following factors which also affect accuracy and precision of x-ray R.S. results were determined in addition: (a) parafocus versus stationary detector focusing geometry, (b) method of peak location, (c) LPA intensity correction, (d) diffractometer electronic stability and (e) elastic constants.The optimum choiees of beam optics and factors (a-e) were defined with regard to aecuraey, precision and minimurn time for stress deterniination, on sharp and broad line speeimens of soft (annealed) and hardened steel and of annealed Cr-powder.


Author(s):  
Ben Pellereau ◽  
Simon Walter ◽  
Paul Pembury

Abstract Small bore austenitic stainless steel pipework is used in a number of nuclear plant systems. Many of these locations are subjected to large thermal shocks and therefore have high fatigue usage factors. Their justification therefore often includes a fatigue crack growth and fracture assessment, for which a key input is the residual stress associated with the welding process, in UK assessments these are typically taken from the R6 compendium. A common process used for these welds is manual tungsten inert gas welding, due to access difficulties each pass is usually completed in two halves. The stop-start locations for each weld run are sometimes stacked, especially in horizontal pipe runs where each weld operation starts at the bottom of the pipe and progresses upwards. The stack up of stop-start locations is likely to lead to considerable circumferential variation in weld residual stress, potentially resulting in stresses that locally exceed the R6 profiles. This paper presents results from a series of FE models for a single small bore pipe weld. The simulated weld is a 3-pass manual TIG weld with an EB insert in a 2 inch (50 mm) nominal diameter pipe. Both 2D and 3D models were run. The results of the modelling are then compared with measurements of weld mock-ups of the same weld (both with and without the stop-start stack-up). The results show that, local to the assumed stop location the predicted stresses do exceed even the R6 level 1 profile (a membrane stress equal to the 1% proof stress of the material). However, the locally enhanced stresses drop off quickly away from the peak location, so for defects of a size that may be a concern for a defect tolerance assessment, the R6 Level 1 and 2 profiles remains appropriate or bounding.


Sign in / Sign up

Export Citation Format

Share Document