Numerical Analysis of Electrodeposited Nickel Coating in Multistage Drawing Processes

2005 ◽  
Vol 127 (2) ◽  
pp. 233-243 ◽  
Author(s):  
L. Q. Zhou ◽  
Y. P. Li ◽  
Y. C. Zhou

The elastic-plastic finite element method of a dynamic explicit algorithm was used to simulate the deep drawing processes of nickel coating electrodeposited on a steel substrate to form an advanced battery shell. The Belytschko-Wong-Chiang shell element was used to mesh the materials, the kinematical work-hardening model was adopted for the components, and the tied-with-failure contact criterion was given to the interfacial combination. The rate-type elastic-plastic constitute law was employed to handle the large deformation, and the central difference method was utilized to solve the finite element equations. The simulations of the materials in the first and final processes illustrated that the steel substrate and the nickel coating were simultaneously deformed and yielded in the die fillet profile and the flange area. The thickness variation of the nickel coating and steel substrate was dependent on the main principal stress, and their variation rule was consistent. In the entire drawing processes, the thinnest region after forming was at the lower part of the cup near the cup bottom, the extent of the coating being thinned after drawing was acceptable, and the material was capable of forming the battery shell. The simulated results were partly compared with tests and other analysis and showed good agreement.

2011 ◽  
Vol 291-294 ◽  
pp. 606-609
Author(s):  
Li Qun Zhou ◽  
Yu Ping Li ◽  
Cai Ming Fu

A finite element method is used to simulate the deep drawing processes of nickel coating with steel substrate into battery shells. The Belytschko-Wong-Chiang shell elements are used and the kinematical work hardening model is adopted, while the ties with failure contact criterion is given to the coating and substrate interface. The stress-strain field and interfacial stresses in the drawing processes are obtained. The nickel coating appeared to be yielded in the drawing processes, of which the maximum effective stress reached 241MPa, and the biggest effective strain reached 0.7524. The interfacial stresses in the coating and substrate varied during the drawing process, and their maximal values reached 40MPa in compressive state.


2012 ◽  
Vol 490-495 ◽  
pp. 2151-2155
Author(s):  
Yong Jun Li ◽  
Li Yuan Ma ◽  
Tian Hui Wang

To detect the damage of curl tube structure with more effect, the finite element method (FEM) and experimental modal analysis (EMA) were employeed to generate the modal flexibility of the curl tube. The modal flexibility was used to compute the modal flexibility-curvature by using the central difference method. Different degrees and locations of damage were simulated by additional quality in the intact curl tube to verify the modal flexibility-curvature and difference generated by both FEM and EMA. The results show that the modal flexibility of curl tube should have the direction. In addition, we conclude that the flexibility curvature’s difference in x and y plane can not be used for damage identification. But using the flexibility curvature’s difference of the z direction in the vertical plane, we can not only identified the multiple damage location, but also to analized degree for the extent of injury to the same location .


Author(s):  
C. W. S. To ◽  
M. L. Liu

Abstract In the investigation reported here novel techniques for the computation of highly nonlinear response statistics, such as mean square and covariance of generalized displacements of large scale discretized plate and shell structures have been developed. The techniques combine the versatile finite element method and the stochastic central difference method as well as derivatives of the latter such that complex aerospace and naval structures under intensive transient disturbances represented as nonstationary random processes can be considered. The flat triangular plate finite element is of the Mindlin type and is based on the hybrid strain formulation. The updated Lagrangiah hybrid strain based formulation is capable of dealing with deformations of finite rotations and finite strains. Explicit expressions for the consistent element mass and stiff matrices were previously obtained, and therefore no numerical matrix inversion and integration is necessary in the element matrix derivation. Several additional features are novel. First, the so-called averaged deterministic central difference scheme is employed in the co-ordinate updating process for large deformations. Second, application of the time co-ordinate transformation in conjunction with the stochastic central difference method enables one to deal with highly stiff discretized structures. Third, application of the adaptive time schemes makes it convenient to solve a wide variety of highly nonlinear systems. Finally, the recursive nature of the stochastic central difference method makes it possible to deal with a wide class of nonstationary random process.


2013 ◽  
Vol 10 (01) ◽  
pp. 1340002 ◽  
Author(s):  
X. Y. CUI ◽  
G. Y. LI ◽  
G. R. LIU

This paper presents an explicit smoothed finite element method (SFEM) for elastic dynamic problems. The central difference method for time integration will be used in presented formulations. A simple but general contact searching algorithm is used to treat the contact interface and an algorithm for the contact force is presented. In present method, the problem domain is first divided into elements as in the finite element method (FEM), and the elements are further subdivided into several smoothing cells. Cell-wise strain smoothing operations are used to obtain the stresses, which are constants in each smoothing cells. Area integration over the smoothing cell becomes line integration along its edges, and no gradient of shape functions is involved in computing the field gradients nor in forming the internal force. No mapping or coordinate transformation is necessary so that the element can be used effectively for large deformation problems. Through several examples, the simplicity, efficiency and reliability of the smoothed finite element method are demonstrated.


Author(s):  
C. W. S. To

Abstract A procedure based on the stochastic central difference method that was presented earlier by the author has been extended to cases involving with spatially and temporally stochastic structural systems that are approximated by the versatile finite element method. It is believed that for the first time nonstationary random responses of this class of systems are considered. The procedure eliminates the limitations associated with those employing the so-called stochastic or probabilistic finite element methods. Owing to its simplicity, the proposed method can easily be incorporated into many commercially available finite element packages.


2010 ◽  
Vol 37-38 ◽  
pp. 1206-1209
Author(s):  
Li Qun Zhou ◽  
Xia Chun Huang ◽  
Cai Ming Fu

A finite element method is used to simulate the sixth drawing process of nickel coating battery shells. The material’s mechanical parameters are tested and shown and the forming tool parameters are given. The Belytschko-Wong-Chiang shell elements are used and the kinematical work hardening model is adopted for the sheets. The stress-strain field in the components in the forming processes is obtained. The nickel coating yielded at the drawing process, the effective plastic strain reached 0.3769-0.7524. The coated sheet does not delaminate in the bonding interface during the deformation process. This study can aid the production of coating battery shells.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Łukasz Warguła ◽  
Dominik Wojtkowiak ◽  
Mateusz Kukla ◽  
Krzysztof Talaśka

This article presents the results of experimental research on the mechanical properties of pine wood (Pinus L. Sp. Pl. 1000. 1753). In the course of the research process, stress-strain curves were determined for cases of tensile, compression and shear of standardized shapes samples. The collected data set was used to determine several material constants such as: modulus of elasticity, shear modulus or yield point. The aim of the research was to determine the material properties necessary to develop the model used in the finite element analysis (FEM), which demonstrates the symmetrical nature of the stress distribution in the sample. This model will be used to analyze the process of grinding wood base materials in terms of the peak cutting force estimation and the tool geometry influence determination. The main purpose of the developed model will be to determine the maximum stress value necessary to estimate the destructive force for the tested wood sample. The tests were carried out for timber of around 8.74% and 19.9% moisture content (MC). Significant differences were found between the mechanical properties of wood depending on moisture content and the direction of the applied force depending on the arrangement of wood fibers. Unlike other studies in the literature, this one relates to all three stress states (tensile, compression and shear) in all significant directions (anatomical). To verify the usability of the determined mechanical parameters of wood, all three strength tests (tensile, compression and shear) were mapped in the FEM analysis. The accuracy of the model in determining the maximum destructive force of the material is equal to the average 8% (for tensile testing 14%, compression 2.5%, shear 6.5%), while the average coverage of the FEM characteristic with the results of the strength test in the field of elastic-plastic deformations with the adopted ±15% error overlap on average by about 77%. The analyses were performed in the ABAQUS/Standard 2020 program in the field of elastic-plastic deformations. Research with the use of numerical models after extension with a damage model will enable the design of energy-saving and durable grinding machines.


Sign in / Sign up

Export Citation Format

Share Document