scholarly journals Symmetric Nature of Stress Distribution in the Elastic-Plastic Range of Pinus L. Pine Wood Samples Determined Experimentally and Using the Finite Element Method (FEM)

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Łukasz Warguła ◽  
Dominik Wojtkowiak ◽  
Mateusz Kukla ◽  
Krzysztof Talaśka

This article presents the results of experimental research on the mechanical properties of pine wood (Pinus L. Sp. Pl. 1000. 1753). In the course of the research process, stress-strain curves were determined for cases of tensile, compression and shear of standardized shapes samples. The collected data set was used to determine several material constants such as: modulus of elasticity, shear modulus or yield point. The aim of the research was to determine the material properties necessary to develop the model used in the finite element analysis (FEM), which demonstrates the symmetrical nature of the stress distribution in the sample. This model will be used to analyze the process of grinding wood base materials in terms of the peak cutting force estimation and the tool geometry influence determination. The main purpose of the developed model will be to determine the maximum stress value necessary to estimate the destructive force for the tested wood sample. The tests were carried out for timber of around 8.74% and 19.9% moisture content (MC). Significant differences were found between the mechanical properties of wood depending on moisture content and the direction of the applied force depending on the arrangement of wood fibers. Unlike other studies in the literature, this one relates to all three stress states (tensile, compression and shear) in all significant directions (anatomical). To verify the usability of the determined mechanical parameters of wood, all three strength tests (tensile, compression and shear) were mapped in the FEM analysis. The accuracy of the model in determining the maximum destructive force of the material is equal to the average 8% (for tensile testing 14%, compression 2.5%, shear 6.5%), while the average coverage of the FEM characteristic with the results of the strength test in the field of elastic-plastic deformations with the adopted ±15% error overlap on average by about 77%. The analyses were performed in the ABAQUS/Standard 2020 program in the field of elastic-plastic deformations. Research with the use of numerical models after extension with a damage model will enable the design of energy-saving and durable grinding machines.

Author(s):  
A. Ajdari ◽  
P. K. Canavan ◽  
H. Nayeb-Hashemi ◽  
G. Warner

Three-dimensional structure of trabecular bone can be modeled by 2D or 3D Voronoi structure. The effect of missing cell walls on the mechanical properties of 2D honeycombs is a first step towards understanding the effect of local bone resorption due to osteoporosis. In patients with osteoporosis, bone mass is lost first by thinning and then by resorption of the trabeculae [1]. Furthermore, creep response is important to analyze in cellular solids when the temperature is high relative to the melting temperature. For trabecular bone, as body temperature (38 °C) is close to the denaturation temperature of collagen (52 °C), trabecular bone creeps [1]. Over the half of the osteoporotic vertebral fractures that occur in the elderly, are the result of the creep and fatigue loading associated with the activities of daily living [2]. The objective of this work is to understand the effect of missing walls and filled cells on elastic-plastic behavior of both regular hexagonal and non-periodic Voronoi structures using finite element analysis. The results show that the missing walls have a significant effect on overall elastic properties of the cellular structure. For both regular hexagonal and Voronoi materials, the yield strength of the structure decreased by more than 60% by introducing 10% missing walls. In contrast, the results indicate that filled cells have much less effect on the mechanical properties of both regular hexagonal and Voronoi materials.


2017 ◽  
Vol 899 ◽  
pp. 272-277
Author(s):  
Hugo Dutra Gomes ◽  
Maria Carolina dos Santos Freitas ◽  
Luciano Pessanha Moreira ◽  
Flavia de Paula Vitoretti ◽  
Jose Adilson de Castro

The present study is primarily engaged in the implementation of the incremental stamping process in a computerized numeric control This paper presents two different approaches to this forming process, an experimental and other numerical. Experimental used by the computer numerical control to perform the printing process and performs numerical simulations of the process using the finite element method. Some parameters are analyzed in both approaches, such as product geometry effects, tool geometry, tool speed, tool path, contact conditions and mechanical properties of the materials.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


Author(s):  
Pedro M. Calas Lopes Pacheco ◽  
Paulo Pedro Kenedi ◽  
Jorge Carlos Ferreira Jorge ◽  
Augusto M. Coelho de Paiva

Production offshore units have a relative long operational life (about 20 years), during which are submitted to the ocean adverse environment loading produced by the combination of wind, waves and currents. This complex loading history can promote the nucleation and propagation of cracks in mooring line components. The presence of defects establishes a critical situation that can lead to catastrophic failures. In spite of residual stress plays a preponderant part in the structural integrity of a mechanical component, the presence of residual stress is not considered in traditional design of these mechanical components. Therefore, is fundamental to develop new and more precise methodologies for assessing the structural integrity of mooring components. The present contribution regards on modeling and simulation of the residual stress distributions in studless chain links using a tri-dimensional elastoplastic finite element model with large displacements. In the analysis three material conditions, associated with different mechanical properties, were considered. The results indicate that the presence of residual stresses modify significantly the stress distribution in the component. Also, residual stress distribution depends on the mechanical properties of the chain link material. The structural integrity of the mechanical component was studied using the concept of critical volume associated to the material volume susceptible to a certain critical crack size. This methodology permits the evaluation of the critical crack length distribution related to brittle fracture of the component.


2011 ◽  
Vol 145 ◽  
pp. 240-244
Author(s):  
Wei Yang ◽  
Pan Ke Wei ◽  
Ji Ming Sun

A three-dimensional finite element model of hydraulic excavator is proposed to simulate soil cutting. To consider nonlinear soil behaviors, we apply the theory of Arbitrary Lagrangian-Eulerian (ALE) and explicit dynamic method to analyze a large scale fluid-solid structure interaction problem. The elastic-plastic assumption theory is introduced to simulate soil material behavior during the process of soil cutting because the nonlinear elastic-plastic model has advantages of simultaneously accounting for dynamic effects of strain hardening, strain rate, automatic mesh contact with friction capability, soil mechanical behavior and soil-bucket interaction. Soil-bucket interaction is modeled as friction with adhesion depending upon different influencing factors. This paper also investigates the parameters that may cause computational instability in soil cutting analysis. The difficulties in the numerical simulation of soil cutting are overcome by adopting suitable parameters to meet the requirement of proper mesh separation criterion. The proposed modeling can also be used to predict soil stress distribution, soil deformation and Von Mises stress distribution of component in hydraulic excavator.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5417-5432
Author(s):  
Chao Li ◽  
Xilong Wang ◽  
Yizhuo Zhang

To explore the overall mechanical properties of bamboo-wood composite cross-laminated timber (BCLT), a simulation model of BCLT mechanical behavior based on the solid element was established using the finite element software ABAQUS. The actual four-point bending experiment was compared and analyzed with the finite element numerical simulation. The total curve error coefficient of the BCLT specimen at 18-mm displacement was 0.2988 while the interval was 0.5 mm. The error coefficient was 0.0178 when the maximum load was reached, and the minimum error coefficient was 0.0015 at 12 mm of displacement. Analysis of the influence of material parameters, meshing density, and material arrangement on the final stress distribution indicate that the difference in the elastic parameters of the material greatly influence the final stress distribution, and the arrangement and combination of materials also have an effect on the overall mechanical properties of the BCLT board. The combination CLT1-2-1 (i.e., the upper and lower layers of the bamboo are Arrangement 1 and the hemlock is Arrangement 2) have a maximum load of 57682 Ν and a maximum stress of 103.9 MPa.


Author(s):  
H Jamshidi Aval ◽  
S Serajzadeh ◽  
A H Kokabi

In this work, the effect of tool geometric parameters on thermo-mechanical behaviour in friction stir welding of AA5086 has been investigated. For doing so, the thermo-mechanical responses of material during welding with different tools have been predicted by a three-dimensional finite-element model using the finite-element code ABAQUS. In addition, welding experiments have been carried out to study the developed microstructures and the mechanical properties of welded alloy. The results show that tool geometry significantly affects the energy input, deformation pattern, plunge force, microstructures, and mechanical properties of the joint. The conical tool with the shoulder angle of 2° has been found to produce a larger deformation region as well as higher mechanical properties comparing with the cylindrical tools employed in this research. Additionally, tensile residual stresses are developed within the region around the weld centre-line, which gradually changes to compressive ones beyond the heat-affected zone. It is found that the ratio of heat generation from plastic to friction dissipation in the conical threaded pin is 44 per cent more than the cylindrical pin with similar shoulder diameter.


Author(s):  
Nobuyoshi Yanagida ◽  
Masaaki Tanaka ◽  
Norimichi Yamashita ◽  
Yukinori Yamamoto

Alternative stress evaluation criteria suitable for Finite Element Analysis (FEA) proposed by Okamoto et al. [1],[2] have been studied by the Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) in Japan. Thermal stress ratchet criteria in plastic FEA are now under consideration. Two criteria are proposed: (1) Evaluating variations in plastic strain increments, and (2) Evaluating the width of the area in which Mises equivalent stress exceeds 3Sm. To verify of these criteria, we selected notched cylindrical vessel models as prime elements. To evaluate the effect of the local peak stress distribution on these criteria, cylindrical vessels with a semicircular notch on the outer surface were selected for this analysis. We used two notch configurations for our analysis, and the stress concentration factor for the notches was set to 1.5 and 2.0. We conducted elastic-plastic analysis to evaluate the ratchet limit. Sustained pressure and alternating enforced longitudinal displacements which causes secondary stress were used as parameters for the elastic-plastic analysis. We found that when no ratchet was observed, the equivalent plastic strain increments decreased and the area in which Mises equivalent stress exceeds 3Sm are below the certain range.


2013 ◽  
Vol 43 (3) ◽  
pp. 33-42 ◽  
Author(s):  
Peiqi Liu ◽  
Liming Zhang ◽  
Siyuan Xu ◽  
Zhixiang Duan ◽  
Zuzhi Chen ◽  
...  

Abstract The structure of wellbore and coupling is connected by thread, it is the position where fatigue failure accidents are happened in gas storage well, and the make-up torque of thread is the key factor that influences the mechanical properties of this structure. In this pa- per, a finite element method was established to discuss the calculation method of make-up torque and the influence law on the stress of coupling in the gas storage well. Results show that the make-up torque cannot be simply ignored due to its great impact on internal stress distribution of gas storage well. Experimental results showed the correctness of the model. Under the action of the make-up torque, the overall stress level inside the wellbore is higher than the external coupling. However the maximum stress exists in the external coupling. The overall stress grad- ually increases with the increase of interference rotation number (abbr. RN) between coupling and wellbore, but the overall distribution trend is almost the same. The first thread on the left of the connection part is the area where fatigue failure is most likely to occur. The make-up torque between threads increases linearly with the increase of RN between cou- pling and wellbore.


Sign in / Sign up

Export Citation Format

Share Document