Safety Envelope for Load Tolerance and its Application to Fatigue Reliability Design

2005 ◽  
Vol 128 (4) ◽  
pp. 919-927 ◽  
Author(s):  
Haoyu Wang ◽  
Nam H. Kim ◽  
Yoon-Jun Kim

In this paper, a safety envelope concept for load tolerance is introduced. This shows the capacity of the current design as a future reference for design upgrade, maintenance, and control. The safety envelope is applied to estimate the load tolerance of a structural part with respect to the fatigue reliability. First, the dynamic load history is decomposed into the average value and amplitude, which are modeled as random variables. Second, through fatigue analysis and uncertainty propagation, the reliability is calculated. Last, based on the implicit function evaluation for the reliability, the boundary of the safety envelope is calculated numerically. The effect of different distribution types of random variables is then investigated to identify the conservative envelope. In order to improve the efficiency of searching the boundary, probabilistic sensitivity information is utilized. When the relationship between the safety of the system and the load tolerance is linear or mildly nonlinear, the linear estimation of the safety envelope turns out to be accurate and efficient. During the application of the algorithm, a stochastic response surface of logarithmic fatigue life with respect to the load capacity coefficient is constructed, and the Monte Carlo simulation is utilized to calculate the reliability and its sensitivities.

2014 ◽  
Vol 118 (1199) ◽  
pp. 53-64
Author(s):  
B. Giublin ◽  
J. A. Vieira ◽  
T. G. Vieira ◽  
L. G. Trabasso ◽  
C. A. Martins

Abstract ITA and EMBRAER are currently executing the research project Automation of Aircraft Structural Assembly (AASA) whose goal is to implement a robotic cell for automating the riveting process of aeronautical structures. The proposal described herein complements the AASA project, adds other manufacturing processes, namely sanding and polishing of aircraft surfaces. To implement the additional processes AASA project resources and facilities were used (robots and metrology systems) and devices designed and /or acquired to allow sharing of these resources. Among these, an Automatic Tooling Support for AERonautics structures (ATS_AER) was designed and built; also, a robot tool changer with high load capacity was acquired. The outcome of this research project is the evaluation of the feasibility of automating the processes of sanding and polishing metal surfaces in the aircraft manufacture using robots. The operating method adopted for surface treatment employed the ‘U’ type trajectory optimised to be run by a KUKA robot KR 500. The sanding process has been applied to aluminum metal sheet specimen sized 2•18ft2 (0•20m2) and used commercial 600 and 800 sandpaper. The automated sanding process yielded an average value of RA 0•48 ± 0•08 which is 25% more efficient when compared to the traditional, manual process whose average value of RA is 0•75 ± 0•51.


Author(s):  
Tang Zhangchun ◽  
Lu Zhenzhou ◽  
Pan Wang ◽  
Zhang Feng

Based on the entropy of the uncertain variable, a novel importance measure is proposed to identify the effect of the uncertain variables on the system, which is subjected to the combination of random variables and fuzzy variables. For the system with the mixture of random variables and fuzzy variables, the membership function of the failure probability can be obtained by the uncertainty propagation theory first. And then the effect of each input variable on the output response of the system can be evaluated by measuring the shift between entropies of two membership functions of the failure probability, obtained before and after the uncertainty elimination of the input variable. The intersecting effect of the multiple input variables can be calculated by the similar measure. The mathematical properties of the proposed global sensitivity indicators are investigated and proved in detail. A simple example is first employed to demonstrate the procedure of solving the proposed global sensitivity indicators and then the influential variables of four practical applications are identified by the proposed global sensitivity indicators.


2020 ◽  
pp. 52-63
Author(s):  
M. Mullai*, K. Sangeetha, R. Surya, G. Madhan kumar, R. Jeyabalan ◽  
◽  
◽  
S. Broumi

This paper presents the problematic period of neutrosophic inventory in an inaccurate and unsafe mixed environment. The purpose of this paper is to present demand as a neutrosophic random variable. For this model, a new method is developed for determining the optimal sequence size in the presence of neutrosophic random variables. Where to get optimality by gradually expressing the average value of integration. The newsvendor problem is used to describe the proposed model.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 145
Author(s):  
Maciej Sydor ◽  
Agata Bonenberg ◽  
Beata Doczekalska ◽  
Grzegorz Cofta

Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.


Author(s):  
U. O. Akpan ◽  
T. S. Koko ◽  
P. A. Rushton ◽  
A. Tavassoli ◽  
M. Else

For deepwater development in the Gulf of Mexico, steel catenary risers (SCRs) supported from both SPAR and semi-submersible platforms have proven to be successful solutions for in-field flowlines, tie-backs, and export systems. It is envisaged that this will continue to be a promising solution in ultra deep-water applications, up to and beyond 10,000 ft. The study, commissioned by the Mineral Management Service (MMS), investigated the reliability of large-diameter SCRs in ultra-deepwater operations. The primary damage mode considered is fatigue failure. A probabilistic methodology for fatigue reliability is developed, which utilizes deterministic cumulative fatigue damage indicators, namely the stress levels and cycles associated with the various sea states and the fatigue strength of the members. Uncertainties in structural load and material properties are accounted for by assigning probability distributions and standard deviations to the deterministic stress levels. Furthermore, fatigue strength parameters, Miner’s indices, and capacities are modeled as random variables. First order reliability method (FORM) is employed for estimating fatigue reliability. The methodology is applied to three deterministic case studies presented by Intec Engineering (2006a, 2006b). The case studies involved either a SPAR or a semi-submersible platform. For the sake of brevity, a case study involving only a SPAR platform is presented in this paper. The effect of uncertainties in parameters on fatigue reliabilities is investigated. It is observed that the fatigue reliability estimates followed similar trends as the deterministic cumulative damage results, and hence can be used to complement deterministic estimates. Additional benefit and insight gained from the probabilistic study, which can be used for design decisions, include information regarding probabilistic importance and probabilistic sensitivity analysis. For case study presented here, it is seen that in general, uncertainty in the fatigue strength exponent (m) has the highest impact on fatigue reliability of SCRs. The second most important random variable is the stress range (S), which captures uncertainties in parameters such as loads and material properties. Parametric sensitivity studies on the fatigue strength parameters indicate that SCR reliability is sensitive to both the standard deviation and probability distribution of the parameters, thus highlighting the need for accurate probabilistic calibration of the random variables.


2012 ◽  
Vol 249-250 ◽  
pp. 628-631
Author(s):  
Xin Li Bai ◽  
Peng Xu ◽  
Jiang Yan Li

The expression of reliability estimation method for fatigue life of machine parts was derived, and two kinds of stress cycles (reversed cycle and un-symmetric reversed cycle) were considered. An iteration method is presented and the corresponding computer program named STRENGTH-2 is developed for estimating reliable life of machine parts. The engineering application results show that the calculated results are close to experimental results. The proposed method can be convenient to carry out the fatigue reliability design for machine parts under the action of uni-axial and multi-axial loadings, and promote the popularization and application of existing anti-fatigue design method. It has the high value of engineering application.


Author(s):  
Lee J. Wells ◽  
Byeng D. Youn ◽  
Zhimin Xi

This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems. Therefore, the EDR method provides much more extensive capabilities than the Taguchi method, such as the ability to estimate not only mean and standard deviation of the response, but also the skewness and kurtosis. The uniqueness of the EDR method is its ability to generate the probability density function (PDF) of system performances. This capability, known as the probabilistic “what-if” study, provides a visual representation of the effects of the design parameters (e.g., its mean and variance) upon the response. In addition, the probabilistic “what-if” study can be applied across multiple design parameters, allowing the analysis of interactions among control factors. Furthermore, the implementation of the probabilistic “what-if” study provides a basis for performing robust design optimization. Because of these advantages, it is apparent that the EDR method provides an alternative platform of quality engineering to the Taguchi method. For easy execution by field engineers, the proposed platform for quality engineering using the EDR method, known as Quick Quality Quantification (Q3), will be developed as a Microsoft EXCEL add-in.


Sign in / Sign up

Export Citation Format

Share Document