Inspection of White Layer in Hard Turned Components Using Electrochemical Methods

2006 ◽  
Vol 129 (2) ◽  
pp. 447-452 ◽  
Author(s):  
Ian S. Harrison ◽  
Thomas R. Kurfess ◽  
Edward J. Oles ◽  
Preet M. Singh

This paper presents the results of electrochemical tests on hard turned steel components that have white layer on the surface. Electrochemical impedance spectroscopy is used to compare a machined surface with white layer against a machined surface without white layer, an annealed surface, and an electrical discharge machined surface. Measurements of the steady-state open-circuit potential are also used for comparison. The results show that the electrochemical properties of a surface with white layer are distinct from a surface without white layer. Specifically, a surface with white layer is more anodic and has lower electrochemical impedance than a surface without white layer in a NaOH solution. These results provide insight into the electrochemical properties of white layer and indicate that surfaces with white layer may corrode more quickly in service.

Author(s):  
Keziban Huner ◽  
Abdulkadir Sezai Sarac

The present study is focused on the electrochemical properties of poly(3,4-propylene­dioxy­thiophene) (Poly(ProDOT)), electrocoated on the single carbon-fiber microelectrode (SCFME) in different electrolytic media, with different solvent dielectric constants (35.9, 41.7, 47.5, 53.3, 59.1 and 64.9). The highest deposition charge density of 24.49 mC cm-2 and the highest specific capacitance of 23.17 mF cm-2 were obtained for Poly(ProDOT) synthesized in a medium with the lowest solvent dielectric constant (e = 35.9). Electrochemical impedance spectroscopy (EIS) results of Poly(ProDOT) coated SCFME measured at open circuit potential showed continuously increased impedance magnitudes as ε was increased from 35.9 to 59.1. For all films, almost capacitive impedance responses at lower frequencies at least were obtained. The highest capacitance was observed for the polymer film synthesized in the medium of e = 35.9. The impedance of this film was also measured in different solvent mixtures with different dielectric constants at open circuit potential.


2017 ◽  
Vol 23 (1) ◽  
pp. 83-95
Author(s):  
Sandra Kunst ◽  
Lilian Beltrami ◽  
Marielen Longhy ◽  
Henrique Cardoso ◽  
Tiago Menezes ◽  
...  

Siloxane hybrid films are fragile and have low mechanical strength due to their vitreous material properties. Hence, a new formulation incorporating a plasticizer agent was developed in order to increase the layer thickness of a uniform and homogeneous hybrid film on tinplate, and to provide flexibility to the polymeric matrix. Tinplate sheets were coated with a hybrid film obtained from a sol-gel process, constituted by t+he addition of the following alkoxide precursors: 3-(trimethoxysilyl) propyl methacrylate and tetraethoxysilane with 0.01 mol L-1 cerium nitrate addition. The influence of the diisodecyl adipate plasticizer con-centration was evaluated. The films were characterized by scanning electron microscopy, profilometry, open circuit potential monitoring, polarization curves and electrochemical impedance spectroscopy. The results showed that all films with diisodecyl adipate had higher electrochemical performance compared to uncoated tinplate. However, the film with the 2% plasticizer concentrations had the best performance in the electrochemical tests, although it had thinner layer.


2016 ◽  
Vol 869 ◽  
pp. 663-668
Author(s):  
Rômulo de O. Pletsch ◽  
Kleber G.B. Alves ◽  
Magda R.S. Vieira ◽  
Celso P. de Melo ◽  
Nadège S. Bouchonneau

In this work, Ag-SiO2 nanoparticles were used as additives in an epoxy paint to evaluate their efficiency to protect SAE 1020 carbon steel from corrosion. Ag-SiO2 particles were characterized using X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Samples of ABNT 1020 steel were coated with an industrial epoxy based paint added with Ag-SiO2 nanoparticles. Electrochemical tests of open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were conducted to evaluate the anticorrosive behavior of the investigated coatings when exposed to saline solution. DLS data show that Ag-SiO2 particles have average diameters of around 223.4 nm. TEM images highlight the presence of Ag-SiO2 particles agglomeration. EIS and OCP measurements show that addition of 0.5% w/w Ag-SiO2 to the epoxy paint could improve the efficiency of the anticorrosive coating, when compared to the epoxy paint without any corrosion inhibitor. Results also show the importance of developing efficient dispersion techniques to avoid the agglomeration of the particles that may increase the porosity of the coating and thus affect its corrosion protection efficiency.


2015 ◽  
Vol 1120-1121 ◽  
pp. 554-558 ◽  
Author(s):  
Juan Mei Wang ◽  
Bing Ren ◽  
Ying Lin Yan ◽  
Qing Zhang ◽  
Yan Wang

In this work, spherical LiFePO4/C composite had been synthesized by co-precipitation and spray drying method. The structure, morphology and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscope (TEM), constant current charge-discharge tests and electrochemical impedance spectroscopy (EIS) tests. The spherical LiFePO4/C particles consisted of a number of smaller grains. The results showed that the morphology of LiFePO4/C particles seriously affected the Li-ion diffusion coefficient and electrochemical properties of lithium ion batteries. Electrochemical tests revealed the spherical LiFePO4/C composite had excellent Li-ion diffusion coefficient which was calculated to be 1.065×10-11 cm2/s and discharge capacity of 149 (0.1 C), 139 (0.2 C), 133 (0.5 C), 129 (1 C) and 124 mAhg-1(2 C). After 50 cycles, the capacity retention rate was still 93.5%.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


2012 ◽  
Author(s):  
Ανδρόνικος Μπαλάσκας

Υβριδικές επιστρώσεις οργανικά τροποποιημένων πυριτικών ενώσεων και εποξειδικώνρητινών (Organically Modified Silicates, ORMOSILs – epoxy) εφαρμόστηκαν στο κράμααργιλίου 2024-Τ3 και σε γαλβανισμένο χάλυβα σε υψηλές θερμοκρασίες (Hot Dip GalvanizedSteel, HDGS) προκειμένου αυτές να προστατεύσουν τα υποστρώματα από τη διάβρωση. Για τηνβελτίωση της αντοχής των επιστρώσεων στην διάβρωση ενσωματώθηκαν στην πολυμερικήμήτρα νανοπεριέκτες από μολυβδαινικό δημήτριο (CeMo) και οξείδιο του τιτανίου (TiO2),καθώς και pH-ευαίσθητα οργανικά νανοδοχεία πληρωμένα με τους αναστολείς διάβρωσης 2-μερκαπτοβενζοθειαζόλιο, 8-υδροξυκινολίνη, 1H-βενζοτριαζολο-4-σουλφονικό οξύ καιεξαφλουοροτιτανικό οξύ.Οι υβριδικές επιστρώσεις εφαρμόστηκαν στο υπόστρωμα με τη διαδικασία εμβάπτισης.Η μορφολογία των επιστρώσεων εξετάστηκε με ηλεκτρονική μικροσκοπία σάρωσης (ScanningElectron Microscopy (SEM)). Η σύνθεση και η δομή τους μελετήθηκε με υπέρυθρηΦασματοσκοπία μετασχηματισμού Fourier (FT-IR) και με μικροανάλυση με φθορισμομετρίαακτίνων Χ (Energy Dispersive X-Ray Analysis (EDX)). H ηλεκτροχημική φασματοσκοπίασύνθετης αντίστασης (Electrochemical Impedance Spectroscopy, EIS), η dc-πόλωση (dcpolarization)και η μέτριση ανοικτού δυναμικού (open circuit potential, OCP) χρησιμοποιήθηκανγια την αξιολόγηση των αντι-διαβρωτικών ιδιοτήτων των επιστρώσεων. Τα αποτελέσματαέδειξαν ότι οι επιστρώσεις με πληρωμένα νανοδοχεία έχουν αυξημένες αντιδιαβρωτικέςιδιότητες συγκριτικά με τις υπόλοιπες επιστρώσεις εμφανίζοντας και ιδιότητες αυτο-θεραπείας.Τέλος, συντέθηκαν νανόσφαιρες οξειδίου του χαλκού (Cu2O), οι οποίεςχαρακτηρίστηκαν με SEM, ηλεκτρονική μικροσκοπία διερχόμενης δέσμης (ΤransmissionΕlectron Μicroscopy (TEM)) και περίθλαση ακτίνων Χ (X ray Diffraction (XRD)). Οινανόσφαιρες στη συνέχεια πληρώθηκαν με ουσίες που δρουν ως βιοκτόνα και ενσωματώθηκανσε βαφές εμπορίου και σε επιστρώσεις βασισμένες σε εποξειδικές ενώσεις και μελετήθηκε ηδράση τους ως αντιαποθετικά αντιδραστήρια. Τα αποτελέσματα έδειξαν ότι οι επιστρώσεις μεπληρωμένες νανόσφαιρες Cu2O είχαν μεγαλύτερη αποτελεσματικότητα σε σύγκριση με τιςβαφές εμπορίου με βιοκτόνα μετά από έκθεση σε θαλάσσιο περιβάλλον.


2019 ◽  
Vol 271 ◽  
pp. 07009
Author(s):  
Changkyu Kim ◽  
Reece Goldsberry ◽  
Ahmad Ivan Karayan ◽  
Jose Milla ◽  
Marwa Hassan ◽  
...  

We present the preparation and inhibition behavior of rebar in the presence of calcium nitrate (CN)-containing microcapsules with concentrations of 0.50, 2.00, and 5.00 wt.% in concrete. From both open circuit potential (OCP) and electrochemical impedance spectroscopy spectra, it was found that an addition of microcapsules containing CN corrosion inhibitor into concrete beams successfully repassivated or maintained the passivity of the rebar when the concrete was cracked. This corrosion inhibitor repassivated the rebar by forming a passive layer on the rebar surface under the crack. This repassivation process was evident by an increase of OCP values to more positive values or by stable OCP values at around -100 mV vs SCE. An increase in phase angle after corrosion activation for the sample with 2.00 wt.% microcapsule clearly showed this repassivation process. The optimum concentration for maintaining the passivity on rebar in the cracked concrete was found to be 5.00 wt.%.


2011 ◽  
Vol 183 ◽  
pp. 143-148 ◽  
Author(s):  
M. Pochrząst ◽  
Jan Marciniak ◽  
K. Wróbel ◽  
Bohdan Bączkowski

The aim of the work was evaluation of electrochemical properties of Co-based alloys (Remanium GM 800+ and Biosil F) and Ni-based alloys (Heraenium NA and Remanium G-Soft) commonly used on frameworks for porcelain faced cast partial dentures. First stage of the work was evaluation of surface roughness by means of direct linear contact measurement (SURTRONIC 3+ profiler, Taylor/Hobson) of samples after casting and surface treatment. Electrochemical properties of surface were assessed by means of potentiodynamic and impedance methods. In potentiodynamic tests, in order to evaluate pitting corrosion resistance of the analyzed alloys, anodic polarization curves were recorded. The VoltaLab® PGP 201 system was applied in corrosion tests. Moreover, in order to evaluate structure and properties of the surface layer the electrochemical impedance spectroscopy (EIS) was applied. Selection of this method enabled to determine the impedance of the material – surface layer – solution interface with the use of approximation of impedance data by means of equivalent electric circuit model. The EIS tests were carried out with the use of the AutoLab PGSTAT 302N system equipped with the FRA2 Faraday impedance module. Electrochemical tests were carried out in artificial saliva at the temperature of 37°C and pH = 7,0±0,1.


Sign in / Sign up

Export Citation Format

Share Document