scholarly journals Flow Downstream of a Cluster of Nine Jets

2006 ◽  
Vol 129 (5) ◽  
pp. 541-550 ◽  
Author(s):  
M. Boutazakhti ◽  
P. E. Sullivan ◽  
M. J. Thomson ◽  
I. Yimer

This work is an experimental investigation of the flow downstream of a low emission nozzle. The nozzle is a 3×3 square matrix of nine small swirling air jets, has a design swirl number of 0.8, and operates at a Reynolds number of 40,000. Particle image velocimetry (PIV) was used to map the velocity field under nonburning and atmospheric conditions for the first 18 jet diameters downstream of the nozzle exit plane. Seeding was liquid injected into the air stream and drops were sized to filter out those larger than 3×3pixels. The results showed that the cluster blends into a single jet-like flow 12 jet diameters downstream with the axial component of the velocity displaying self-similar properties. Lateral jet interaction slows the decay of the axial component of the velocity and jet expansion in the developed region while accelerating the decay of the radial component.

2017 ◽  
Vol 827 ◽  
pp. 250-284 ◽  
Author(s):  
Douglas W. Carter ◽  
Filippo Coletti

We experimentally investigate scale-to-scale anisotropy from the integral to the dissipative scales in homogeneous turbulence. We employ an apparatus in which two facing arrays of randomly actuated air jets generate turbulence with negligible mean flow and shear, over a volume several times larger than the energy-containing eddy size. The Reynolds number based on the Taylor microscale is varied in the range$Re_{\unicode[STIX]{x1D706}}\approx 300{-}500$, while the axial-to-radial ratio of the root mean square velocity fluctuations ranges between 1.38 and 1.72. Two velocity components are measured by particle image velocimetry at varying resolutions, capturing from the integral to the Kolmogorov scales and yielding statistics up to sixth order. Over the inertial range, the scaling exponents of the velocity structure functions are found to differ not only between the longitudinal and transverse components, but also between the axial and radial directions of separation. At the dissipative scales, the moments of the velocity gradients indicate that departure from isotropy is, at the present Reynolds numbers, significant and more pronounced for stronger large-scale anisotropy. The generalized flatness factors of the longitudinal velocity differences tend towards isotropy as the separation is reduced from the inertial to the near-dissipative scales (down to about$10\unicode[STIX]{x1D702}$,$\unicode[STIX]{x1D702}$being the Kolmogorov length), but become more anisotropic for even smaller scales which are characterized by high intermittency. At the large scales, the direction of turbulence forcing is associated with a larger integral length, defined as the distance over which the velocity component in a given direction is spatially correlated. Because of anisotropy, the definition of the integral length is not trivial and may lead to dissimilar conclusions on the qualitative behaviour of the large scales and on the quantitative values of the normalized dissipation. Alternative definitions of these quantities are proposed to account for the anisotropy. Overall, these results highlight the importance of evaluating both the different velocity components and the different spatial directions across all scales of the flow.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Lars Gräf ◽  
Leonhard Kleiser

A film-cooling configuration generating an antikidney vortex pair is studied. The configuration features cylindrical cooling holes inclined at an angle of α=35  deg and arranged in two spanwise rows with row-wise alternating yaw angles ±β. Results of several large-eddy simulations are presented with varying blowing conditions and yaw angles. The effects on the achieved cooling and the generated losses are studied. The film-cooling Reynolds number (based on the fully turbulent hot boundary layer along a flat plate and the cooling hole diameter) is 6570 and the Mach number is 0.2. The density as well as mass-flux ratios (DR and M) range from 1 to 2 and the yaw angles from β=±30  deg to ±60  deg. We identify scaling parameters and explain relevant mechanisms. Moreover, the flow field is subdivided into three regions featuring different physical mechanisms: the single-jet, the jet-interaction, and the diffusion region. A strong antikidney vortex pair occurs for high momentum ratios I. For the highest ratio, I = 2.3, our configuration may provide even better effectiveness than cooling with particular fan-shaped holes.


1984 ◽  
Vol 106 (1) ◽  
pp. 27-33 ◽  
Author(s):  
S. A. Striegl ◽  
T. E. Diller

An experimental study was done to determine the effect of entrainment temperature on the local heat transfer rates to single and multiple, plane, turbulent impinging air jets. To determine the effect of entrainment of the surrounding fluid, the single jet issued into an environment at a temperature which was varied between the initial temperature of the jet and the temperature of the heated impingement plate. An analytical model was used to correlate the measured heat transfer rate to a single jet. The effect of the entrainment temperature in a single jet was then used to analyze the effect of entrainment from the recirculation region between the jets of a jet array. Using the measured temperature in the recirculation region to include the effect of entrainment, the single jet correlations were successfully applied to multiple jets.


2014 ◽  
Vol 651-653 ◽  
pp. 2414-2417
Author(s):  
Xiao Qing Zhang ◽  
Yu Dong Jia ◽  
Fu Rong Du

For the aim of analyzing focusing field characteristics of radially polarized beams, a conjoint analyzing method is presented based on LabVIEW and MATLAB. The main program is programmed in the LabVIEW environment, connecting with MATLAB program through ActiveX control. Experimental results show that the strength of the radial component in the center is zero and the strength of the axial component in the center is the largest. The conjoint analysis method realized characteristic analysis of focusing field for radially polarized beams, laying the groundwork for beam transmission of the late application.


Author(s):  
Seyed Sobhan Aleyasin ◽  
Mark Francis Tachie

Twin round and elliptic jets with nozzle spacing of S/d = 2.8 are investigated and the results are compared with those obtained from single jets. The measurements were performed at Re = 10000 using particle image velocimetry. The results show that the twin elliptic jets merge and combine faster than the round jets. However, the twin elliptic jets have lower spreading than their corresponding single jet but in the round jets it is opposite. The vortical structures obtained using swirling strength analysis are more intense in the elliptic jets compared with the round jets; consistent with their higher spreading. In the shear layers, the velocity skewness is considerably positive due to the diffusion of high-speed jet fluid towards the ambient. On the other hand, the streamwise skewness on the centerline is negative because of the entrainment of low-speed ambient fluid; resulting in centerline velocity decay. In addition, the joint and weighted joint probability density functions are used to understand the dominant events which contribute into the mixing of the jets with their surrounding fluid.


2020 ◽  
pp. 146808742096061
Author(s):  
Jinxin Yang ◽  
Lingzhe Rao ◽  
Yilong Zhang ◽  
Charitha de Silva ◽  
Sanghoon Kook

This study measures in-flame flow fields in a single-cylinder small-bore optical diesel engine using Flame Image Velocimetry (FIV) applied to high-speed soot luminosity movies. Three injection pressures were tested for a two-hole nozzle injector to cause jet-wall interaction and a significant jet-jet interaction within 45° inter-jet spacing. The high-pressure fuel jets were also under the strong influence of a swirl flow. For each test condition, soot luminosity signals were recorded at a high framing rate of 45 kHz with which the time-resolved, two-dimensional FIV post-processing was performed based on the image contrast variations associated with flame structure evolution and internal pattern change. A total of 100 combustion events for each injection pressure were recorded and processed to address the inherent cyclic variations. The ensemble-averaged flow fields were used for detailed flow structure discussion, and Reynolds decomposition using a spatial filtering method was applied to obtain high-frequency fluctuations that were found to be primarily turbulence. The detailed analysis of flow fields suggested that increased injection pressure leads to enhanced jet flow travelling along the bowl wall and higher flow vectors penetrating back towards the nozzle upon the impingement on the wall. Within the jet-jet interaction region, the flow vectors tend to follow the swirl direction, which increases with increasing injection pressure. The FIV also captured a turbulent ring vortex formed in the wall-jet head, which becomes larger and clearer at higher injection pressure. A vortex generated in the centre of combustion chamber was due to the swirl flow with its position being shifted at higher injection pressure. The bulk flow magnitude indicated significant cyclic variations, which increases with injection pressure. The turbulence intensity is also enhanced due to higher injection pressure, which primarily occurs in the wall-jet head region and the jet-jet interaction region.


Author(s):  
Heyun Liu ◽  
Xiaohui Ma

Atmospheric ice accretion on structures is a problem of fundamental importance to a number of industries. Examples of engineering problems caused by ice accretion involving aircraft, power transmission lines, telecommunication towers, electrical railway contact-wires, and other structures. Under atmospheric icing conditions two basic types of ice may form; rime or glaze. The supercooled micro-droplets in clouds are an important factor in icing. The objective of this study was to develop a new experimental method to investigate a single supercooled micro-droplet freezing process, in order to better understand the mechanism of rime or glaze ice accretion. The experimental device and principles are described in this paper. The experimental set has two small cold rooms, which is separated by a board with a central hole. A droplet with diameter of 15∼40 μm, temperature of 0∼−5°C was levitated in the cold air stream by electrostatic force. A CCD camera tracked its trace. The air temperature is from 0∼−10°C, the micro-droplet diameter is from 15∼40μm, and its temperature is from 0∼−5°C in the experimental study. This article focused on the experimental set and the experimental principles, and the next article will focus on the experimental data analysis.


Author(s):  
Peter Griebel ◽  
Michael Fischer ◽  
Christoph Hassa ◽  
Eggert Magens ◽  
Henning Nannen ◽  
...  

In this research work the potential of rich quench lean combustion for low emission aeroengines is investigated in a rectangular atmospheric sector, representing a segment of an annular combustor. For a constant design point (cruise) the mixing process and the NOx formation are studied in detail by concentration, temperature and velocity measurements using intrusive and non-intrusive measuring techniques. Measurements at the exit of the homogeneous primary zone show relatively high levels of non-thermal NO. The NOx formation in the quench zone is very low due to the quick mixing of the secondary air achieved by an adequate penetration of the secondary air jets and a high turbulence level. The NOx and CO emissions at the combustor exit are low and the pattern factor of the temperature distribution is sufficient.


2017 ◽  
Vol 121 (1240) ◽  
pp. 790-802 ◽  
Author(s):  
Y. W. YAN ◽  
Y. P. Liu ◽  
Y. C. Liu ◽  
J. H. Li

ABSTRACTA Lean Premixed Prevaporised (LPP) low-emission combustor with a staged lean combustion technology was developed. In order to study cold-flow dynamics in the LPP combustor, both experimental tests using the particle image velocimetry (PIV) to quantify the flow dynamics and numerical simulation using the commercial software (FLUENT) were conducted, respectively. Numerical results were in good agreement with the experimental data. It is shown from the observation of the results that: there is a Primary Recirculation Zone (PRZ), a Corner Recirculation Zone (CRZ) and a Lip Recirculation Zone (LRZ) in the LPP combustor, and the exchanges of mass, momentum and energy between pilot swirling flow and primary swirling flow are contributed by the velocity gradients, and the shear flow is transformed into a mixing layer exhibiting the higher Reynolds stresses, which suggests the mixing process is strictly affected by the Reynolds stresses.


Sign in / Sign up

Export Citation Format

Share Document