Effective Elastic Stiffnesses of an Anisotropic Medium Permeated by Tilted Cracks

1999 ◽  
Vol 66 (3) ◽  
pp. 680-686 ◽  
Author(s):  
C. Barret ◽  
S. Baste

This paper is concerned with the relationship between the effective stiffness tensor and the intensity of damage in individual modes for an anisotropic material with tilted cracks. The predictions are compared favorably with the experimentally measured load-induced changes of the 13 stiffnesses of a two-dimensional C/C-SiC ceramic matrix composite subjected to an off-axis solicitation. By taking into account the thickness of the cracks, it is possible to understand the change of the elastic anisotropy of the material and of its inelastic strain.

Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 151-156
Author(s):  
Shyam ◽  
M. Shanmuka Srinivas ◽  
Kishor Kumar Gajrani ◽  
A. Udayakumar ◽  
M. Ravi Sankar

Author(s):  
M. J. Presby ◽  
C. Gong ◽  
S. Kane ◽  
N. Kedir ◽  
A. Stanley ◽  
...  

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2-D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to kinetic energy of impacting particles in conjunction with nominal density, matrix hardness and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.


2017 ◽  
Vol 736 ◽  
pp. 166-170 ◽  
Author(s):  
V.A. Beregovoi ◽  
A.M. Beregovoi

Compositions of porous compounds (density 300 to 500 kg/m3) for thermal insulation of hot surfaces up to 1300oC were developed. Ordinary clay (at a clinkering temperature of 1150...1200oC), was chosen as a main substance for structure formation. The increasing thermo-resistance fraction of a ceramic matrix composite was obtained via embedding a refractory clay and dinas fillers into compositionб as well as by means of optimizing the relationship «ordinary clay – high aluminous cement», for which the formation of additional amount of mullite phase is observed when first heating of material.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1510-1517
Author(s):  
QINGMING ZHANG ◽  
FENGLEI HUANG ◽  
LI CHEN ◽  
LIMING HAN ◽  
JINZHU LI

In this paper, experimental investigation and theoretical analysis are carried out in an attempt to study the response of SiC ceramic matrix composite reinforced with three dimensional braided fabric(3 D C/SiC ) under high velocity impact. The results show that 3 D C/SiC composite will be turned into comminution if the pressure of the impact point resulted from the projectile impacting 3 D C/SiC composite sample is larger than 780Mpa. Based on the analysis of the mechanism of composite comminution, a theoretical model has been developed.


Sign in / Sign up

Export Citation Format

Share Document