scholarly journals A Tracking Controller for Linear Time-Varying Systems

1998 ◽  
Vol 120 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Min-Shin Chen

This paper proposes a new tracking control design for linear time-varying systems. The proposed control input, which is in the span of finitely many preselected input data, minimizes the L2-norm of the output tracking error. The more input data is used, the less L2-norm of the tracking error is achieved. The design of the new controller, which consists of a feedforward controller and a discretized state feedback loop, requires a finite-time preview of the system parameters and the reference trajectory. It is shown that as long as the preview time is longer than a critical value, the closed-loop stability is maintained irrespective of the stability property of the system’s zero dynamics. When the system parameters are periodically time-varying, the proposed design can be solely based on a set of experimental input and output data instead of on the exact information of system parameters.

Author(s):  
S N Huang ◽  
K K Tan ◽  
T H Lee

A novel iterative learning controller for linear time-varying systems is developed. The learning law is derived on the basis of a quadratic criterion. This control scheme does not include package information. The advantage of the proposed learning law is that the convergence is guaranteed without the need for empirical choice of parameters. Furthermore, the tracking error on the final iteration will be a class K function of the bounds on the uncertainties. Finally, simulation results reveal that the proposed control has a good setpoint tracking performance.


2017 ◽  
Vol 40 (13) ◽  
pp. 3834-3845 ◽  
Author(s):  
Yan Geng ◽  
Xiaoe Ruan

In this paper, an interactive iterative learning identification and control (ILIC) scheme is developed for a class of discrete-time linear time-varying systems with unknown parameters and stochastic noise to implement point-to-point tracking. The identification is to iteratively estimate the unknown system parameter matrix by adopting the gradient-type technique for minimizing the distance of the system output from the estimated system output, whilst the control law is to iteratively upgrade the current control input with the current point-to-point tracking error scaled by the estimated system parameter matrix. Thus, the iterative learning identification and the iterative learning control are scheduled in an interactive mode. By means of norm theory, the boundedness of the discrepancy between the system matrix estimation and the real one is derived, whilst, by the manner of the statistical technique, it is conducted that the mathematical expectation of the tracking error monotonically converges to nullity and the variance of the tracking error is bounded. Numerical simulations exhibit the validity and effectiveness of the proposed ILIC scheme.


2013 ◽  
Vol 278-280 ◽  
pp. 1403-1408 ◽  
Author(s):  
Zheng Li

A generalized minimum variance controller is developed for linear time-varying systems for servo applications. The plants to be controlled is described using a SISO CARMA model and the control objective is to minimize a generalized minimum variance performance index, where the output tracking error variance is penalized by squared incremental of plant input in order to reduce fluctuation in plant input and attenuate process disturbances.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lulu Feng ◽  
Ping Zhao

This paper deals with the finite-time stability (FTS) of switched linear time-varying (SLTV) systems with time-varying delay. Firstly, based on Lyapunov–Krasovskii functional technique and average dwell time (ADT) approach, a sufficient criterion on FTS for SLTV systems with time-varying delay is obtained. For the SLTV system with delay and control input, based on the criterion, a state feedback controller is designed such that the closed-loop system is finite-time stable (FTS). Finally, an example is employed to illustrate the validity of our results.


Author(s):  
Nanjun Liu ◽  
Andrew Alleyne

This paper integrates a previously developed iterative learning identification (ILI) (Liu, N., and Alleyne, A. G., 2016, “Iterative Learning Identification for Linear Time-Varying Systems,” IEEE Trans. Control Syst. Technol., 24(1), pp. 310–317) and iterative learning control (ILC) algorithms (Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst. Mag., 26(3), pp. 96–114), into a single norm-optimal framework. Similar to the classical separation principle in linear systems, this work provides conditions under which the identification and control can be combined and guaranteed to converge. The algorithm is applicable to a class of linear time-varying (LTV) systems with parameters that vary rapidly and analysis provides a sufficient condition for algorithm convergence. The benefit of the integrated ILI/ILC algorithm is a faster tracking error convergence in the iteration domain when compared with an ILC using fixed parameter estimates. A simple example is introduced to illustrate the primary benefits. Simulations and experiments are consistent and demonstrate the convergence speed benefit.


1971 ◽  
Vol 93 (4) ◽  
pp. 261-267 ◽  
Author(s):  
R. E. Blodgett ◽  
K. P. Young

A means is presented for determining stability of linear time-varying systems with one feedback nonlinearity. The stability condition involves the minimization of certain time functions of the system coefficients as well as the imaginary axis behavior of a polynomial. It is required that the equation of the linear time-varying system be asymptotically stable and be in phase variable form. The nonlinearity is restricted to lie in a sector. For the limiting case of an autonomous linear system the criterion reduces to the Popov stability condition in certain cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Geng ◽  
Xiaoe Ruan ◽  
Hyo-Sung Ahn

This paper develops a type of data-driven networked optimal iterative learning control strategy for a class of discrete linear time-varying systems with one-operation Bernoulli-type communication delays. In terms of the stochastic Bernoulli-type one-operation communication delayed inputs and outputs, the previous-iteration synchronous compensations are adopted. By means of deriving gradients of two types of objective functions that express the optimal approximation of the system matrix and the minimal tracking error, the strategy approximates the system matrix and upgrades the control inputs in an interact mode as the iteration evolves. By taking advantage of matrix theory and statistical technique, it is derived that the approximation discrepancy of the system matrix is bounded and the mathematical expectation of the tracking error vanishes as the iteration goes on. Numerical simulations manifest the validity and effectiveness.


Author(s):  
Yuxiang Guo ◽  
Baoli Ma

This paper is mainly concerned with asymptotic stability for a class of fractional-order (FO) nonlinear system with application to stabilization of a fractional permanent magnet synchronous motor (PMSM). First of all, we discuss the stability problem of a class of fractional time-varying systems with nonlinear dynamics. By employing Gronwall–Bellman's inequality, Laplace transform and its inverse transform, and estimate forms of Mittag–Leffler (ML) functions, when the FO belongs to the interval (0, 2), several stability criterions for fractional time-varying system described by Riemann–Liouville's definition is presented. Then, it is generalized to stabilize a FO nonlinear PMSM system. Furthermore, it should be emphasized here that the asymptotic stability and stabilization of Riemann–Liouville type FO linear time invariant system with nonlinear dynamics is proposed for the first time. Besides, some problems about the stability of fractional time-varying systems in existing literatures are pointed out. Finally, numerical simulations are given to show the validness and feasibleness of our obtained stability criterions.


Sign in / Sign up

Export Citation Format

Share Document