Study on the Thermo-Elastic-Plastic Cutting Model for 3-D Tool with Chip Breaker

1998 ◽  
Vol 120 (4) ◽  
pp. 265-274 ◽  
Author(s):  
Zone-Ching Lin ◽  
Yan-Liang Zheng

This paper used large deformation finite element theory, updated Lagrangian formulation, finite difference method, and incremental theory to develop a three-dimensional thermo-elastic-plastic simulation model for a tool with chip breaker. Both the critical strain energy density theory and the tool feed geometrical location were introduced as the chip separation criterion for cutting. The algorithm of tool movement geometrical limitations was used to examine and correctly the node so as to conform to real cutting conditions. In this model, the tool moved step by step in the simulation, which ran from the initial contact between tool and workpiece to the formation of steady cutting force. Finally, the numerical simulation model proposed in this paper was used to analyze the changes in workpiece and chip shapes, stress, strain rate, residual stress, temperature and cutting force of mild steel workpiece under different chip breaker lengths. The results were also compared with those from tools without chip breaker. The findings indicate that the chip breaker length affects the shorter the chip breaker length, the better the effects of chip breaker, and the lower the values of the aforementioned physical properties.

1978 ◽  
Vol 100 (2) ◽  
pp. 222-228 ◽  
Author(s):  
E. Usui ◽  
A. Hirota ◽  
M. Masuko

The paper proposes a new model of chip forming process in three dimensional cutting with single point tool, in which the process is interpreted as a piling up of orthogonal cuttings along the cutting edge. Based upon the proposed model, an energy method similar to the upper bound approach, which enables to predict the chip formation and the three components of cutting force by using only the orthogonal cutting data, is developed. The method is also applied to predict chip formation and cutting force in oblique cutting, plain milling, and groove cutting operations.


2011 ◽  
Vol 337 ◽  
pp. 346-349
Author(s):  
Tsung Chia Chen

This study aims to analyze the effects of angular U-bending process on the springback of metal sheets. Based on Updated Lagrangian Formulation (ULF), the 3D incremental elastic-plastic Finite Element Method was inferred to simulate the U-bending process of metal sheets. The die/blank holder profile with angles of α=-4°, α=-2°, α=0°, α=2°, α=4° and die/punch profile with radiuses of Rp=Rd=6.0mm were analyzed to determine the influence of tool angles on the springback. With different tool angles to proceed the U-bending process of metal sheets, it is found that the larger or smaller die angles, the more springback magnitude. When perpendicular U-sheets are required, θ1 of the U-sheet presents 90 degree on the tool angle α=-1.2° and θ2 shows 90 degrees on the tool angle α=-0.4°. The aim of this study is to investigate the effects of angle variables on the springback in the U-bending process and to obtain useful data from the industrial field.


2013 ◽  
Vol 468 ◽  
pp. 20-23
Author(s):  
Mu Lan Wang ◽  
Jun Ming Hou ◽  
Bao Sheng Wang

The Cutting force and cutting temperature are the important factors which can affect the quality and accuracy of the aluminum alloy work-pieces. Based on the theoretical analysis of the cutting force and cutting temperature, the three-dimensional Finite Element Model (FEM) with the overall tool is established. The corresponding results of the digital simulation were researched, and the cutting force and cutting temperature were analyzed. The cutting temperature and cutting force changes were compared by altering the axial depth of cut and the feed rate. Keywords: Oblique cutting model, Finite Element Method (FEM), Cutting temperature, Cutting force, Aluminum alloy work-piece


2016 ◽  
Vol 83 (10) ◽  
Author(s):  
Xi Shi ◽  
Yunwu Zou ◽  
Huibo Fang

For real engineering surfaces contact, most asperities come into contact in a configuration of shoulder-to-shoulder instead of aligned head-on. In this work, a three-dimensional (3D) model of two identical elastic–plastic spherical asperities in contact was developed which characterizes the initial contact offset with polar angle α and azimuthal angle β. The simulations with finite-element method (FEM) show that the adhesive coefficient of friction (COF) is only influenced by large initial azimuthal angle thus mainly depends on interfacial shear strength. The plowing COF is determined, however, by effective contact interference, which reflects the combined effects of α and β. Moreover, a detailed parametric study shows that the load ratio is significantly dependent on Young's modulus and interfacial shear strength, while the maximum elastic rebound force during the unloading phase is mainly dependent on polar angle.


2013 ◽  
Vol 7 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Takashi Matsumura ◽  
◽  
Motohiro Shimada ◽  
Kazunari Teramoto ◽  
Eiji Usui ◽  
...  

A force model for milling with cutter axis inclination is presented. The model predicts the cutting force and chip flow direction. Three-dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities in the inclined coordinate system with a ball end mill. The chip flow direction is determined to minimize the cutting energy consumed into the shear energy on the shear plane and the friction energy on the rake face. Then, the cutting force is predicted in the chip flow determined model. The presented cutting model is verified by comparing the predicted cutting forces to the measured forces in the actual cutting tests. As an advantage of the presented force model, the change in the chip flow direction during one rotation of the cutter is also predicted in the simulation for the cutter axis inclination and the cutting parameters. In the simulation, the effect of cutter axis inclination on the cutting process is discussed in terms of the tool wear and surface finish. The cutting force charts, in which the maximum values of the positive and the negative cutting forces are simulated for the inclination angles, are presented to review the cutter axis inclination. The applicable cutter axis inclination can be determined by taking into account the thresholds of the cutting force components.


2007 ◽  
Vol 339 ◽  
pp. 72-77
Author(s):  
H.X. Wang ◽  
Bo Wang ◽  
Jing He Wang

In this work, a coupled thermo-mechanical plane-strain large deformation FE cutting model is developed to simulate diamond turning based on the updated Lagrangian formulation. As expected, the effects of friction coefficient on cutting forces, chip deformation, cutting temperature, flow stresses and shearing angle are investigated by FE simulations. The simulated results can be adopted as a reference to select the reasonable friction coefficient in diamond turning process.


Author(s):  
C. W. S. To ◽  
M. L. Liu

Abstract In the present investigation the incremental Hellinger-Reissner variational principle, a hybrid-strain based formulation and an updated Lagrangian formulation are adopted to derive explicit expressions for element stiffness matrices of various flat triangular shell finite elements. These elements are developed for application to the analysis of thin and thick shell structures undergoing large geometrically nonlinear deformation at finite strain. Correct representations of finite rotations and the specifically chosen strain field maintain appropriate rigid body motions and prevent shear locking phenomena. Consideration of thickness updating and a finite strain formulation relaxes any plane stress assumptions and enables the analyst to deal with three-dimensional constitutive models. Two numerical examples are presented to demonstrate the performance of the elements.


2011 ◽  
Vol 337 ◽  
pp. 332-335 ◽  
Author(s):  
Tsung Chia Chen ◽  
Jiun Ming Ye

The squaring process to shape a circular tube into a symmetric square clad tube is examined by a three-dimensional incremental elastic-plastic finite-element method based on an updated Lagrangian formulation. The effects of various parameters, such as geometric ratio R/t, strain hardening exponent n, friction coefficient μ, and the length of tube L, on the occurrence of collapse in the squaring process are discussed and interpreted in a theoretical manner. The findings show that geometric ratio is the major factor in the process of squaring circular tubes. When R/t=25, serious collapse is likely to appear. Aiming at circular tubes with geometric ratio R/t=25, this study proposes six analysis configurations for clad tubes to discuss the possibility of clad tubes avoiding collapse. The findings showed that clad tubes could effectively reduce the collapse ratio.


2015 ◽  
Vol 661 ◽  
pp. 69-76
Author(s):  
Tsung Chia Chen ◽  
Ming Long Xu

Based on materials, different punch radii (0.3, 0.35, 0.4, 0.45, and 0.5 mm), two sets of diameter-diameter ratio 1.(.167, 1.25, 1.33, 1.4167, and 1.5) and 2.(1.6, 1.45, 1.33, 1.231, and 1.143), and two sets of depth ratio 1.(1.3, 1.4, 1.5, 1.6, and 1.7) and 2.(2.14, 1.875, 1.67, 1.5, and 1.36) are used for the stamping processes to analyze the simulation and experimental difference in copper sheet-metal (C1100) miniature layered cups. Prandtl-Reuss flow rule is integrated with finite deformation theory and Updated Lagrangian Formulation (ULF) to establish the incremental elastic-plastic deformation Finite Element Method in Coulomb’s Friction Law for simulating the miniature layered cup process. Generalized rmin algorithm is utilized in the forming process for dealing with elastic-plastic behaviors and die contact. From the simulation data, the relationship among deformation history, punch load, and punch stroke, the stress-strain distribution, and the distribution of the thinnest thickness by different punch radii are acquired.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985284
Author(s):  
Meiliang Wang ◽  
Mingjun Wang ◽  
Xiaobo Li

The use of the traditional fabric simulation model evidently shows that it cannot accurately reflect the material properties of the real fabric. This is against the background that the simulation result is artificial or an imitation, which leads to a low simulation equation. In order to solve such problems from occurring, there is need for a novel model that is designed to enhance the essential properties required for a flexible fabric, the simulation effect of the fabric, and the efficiency of simulation equation solving. Therefore, the improvement study results will offer a meaningful and practical understanding within the field of garment automation design, three-dimensional animation, virtual fitting to mention but a few.


Sign in / Sign up

Export Citation Format

Share Document