FE Simulation of Diamond Turning with Different Friction Coefficients

2007 ◽  
Vol 339 ◽  
pp. 72-77
Author(s):  
H.X. Wang ◽  
Bo Wang ◽  
Jing He Wang

In this work, a coupled thermo-mechanical plane-strain large deformation FE cutting model is developed to simulate diamond turning based on the updated Lagrangian formulation. As expected, the effects of friction coefficient on cutting forces, chip deformation, cutting temperature, flow stresses and shearing angle are investigated by FE simulations. The simulated results can be adopted as a reference to select the reasonable friction coefficient in diamond turning process.

1986 ◽  
Vol 108 (3) ◽  
pp. 198-204 ◽  
Author(s):  
W. T. Carter ◽  
D. Lee

Analytical modeling of deformation processing methods requires a thorough understanding of the die–billet interfacial conditions, in particular, the nature of frictional boundary conditions. In order to gain insight into the role of friction on the deformation behavior of metals under uniaxial compression, a series of carefully controlled experiments were made with 6061-T6 aluminum cylinder and ring specimens. From measurements of the change in internal diameter and the height of the ring specimens, the average friction coefficient can be found using the calibration method proposed by Male and Cockcroft. Using this friction coefficient, a series of finite element analyses were made to model the deformation of solid aluminum cylinders which were compressed under identical die–billet contact conditions. An updated Lagrangian formulation and the contact surface algorithm of the ADINA finite element code were used in the analysis. Comparison of the experimental findings with those of the finite element analysis shows some discrepancies; possible causes for these differences are identified.


2011 ◽  
Vol 314-316 ◽  
pp. 1065-1068
Author(s):  
Shu Jun Li ◽  
Xiao Hang Wan ◽  
Zhao Wei Dong ◽  
Yuan Yuan

Adopted the Lagrange quality point coordinate system description method used the FEM analysis software, the reasonable two-dimension heat-mechanic coupling orthogonal cutting model is established in this paper, which uses the ameliorated Coulomb friction theory to simulate the friction status between the chips and tools. This paper simulates the cutting process with different friction coefficient. It can draw conclusions that the cutting forces and the residual stresses of machined surface are increasing with the raising of touching length of rake face and chip, the raising of cutting temperature. The friction coefficient has the important effect on the machining quality.


1998 ◽  
Vol 120 (4) ◽  
pp. 265-274 ◽  
Author(s):  
Zone-Ching Lin ◽  
Yan-Liang Zheng

This paper used large deformation finite element theory, updated Lagrangian formulation, finite difference method, and incremental theory to develop a three-dimensional thermo-elastic-plastic simulation model for a tool with chip breaker. Both the critical strain energy density theory and the tool feed geometrical location were introduced as the chip separation criterion for cutting. The algorithm of tool movement geometrical limitations was used to examine and correctly the node so as to conform to real cutting conditions. In this model, the tool moved step by step in the simulation, which ran from the initial contact between tool and workpiece to the formation of steady cutting force. Finally, the numerical simulation model proposed in this paper was used to analyze the changes in workpiece and chip shapes, stress, strain rate, residual stress, temperature and cutting force of mild steel workpiece under different chip breaker lengths. The results were also compared with those from tools without chip breaker. The findings indicate that the chip breaker length affects the shorter the chip breaker length, the better the effects of chip breaker, and the lower the values of the aforementioned physical properties.


2010 ◽  
Vol 29-32 ◽  
pp. 1815-1819 ◽  
Author(s):  
Gang Tao Xu ◽  
Yu Sheng Li

A thermo-elastic-plastic model using explicit finite element code ABAQUS 6.8 was developed to investigate the effect of tool-chip friction in orthogonal cutting AISI4340. A.L.E finite element model was presented and the Johnson-Cook plastic model was used to model the workpiece material which is suitable for modeling cases with high strain, strain rate, strain hardening, and non-linear properties. In this paper, three different friction coefficient values of 0.2, 0.3, 0.4 were considered to study the effect on Cutting temperature, cutting forces and cutting stress. The results told a clear understanding of the effect of friction coefficient in orthogonal metal cutting, and larger friction coefficient induced higher cutting temperature, bigger cutting forces and larger cutting stress.


2018 ◽  
Vol 50 (4) ◽  
pp. 458-464
Author(s):  
Xu Bao ◽  
Xiaolei Guo ◽  
Pingxiang Cao ◽  
Linlin Xie ◽  
Minsi Deng

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2007 ◽  
Vol 7 (3) ◽  
pp. 192-202 ◽  
Author(s):  
Jing Zhou ◽  
Derek Yip-Hoi ◽  
Xuemei Huang

In order to optimize turning processes, cutting forces need to be accurately predicted. This in turn requires accurate extraction of the geometry of tool-workpiece engagements (TWE) at critical points during machining. TWE extraction is challenging because the in-process workpiece geometry is continually changing as each tool pass is executed. This paper describes research on a hybrid analytical, solid modeler, and feature-based methodology for extracting TWEs generated during general turning. Although a pure solid modeler-based solution can be applied, it will be shown that because of the ability to capture different cutting tool inserts with similar geometry and to model the process in 2D, an analytical solution can be used instead of the solid modeler in many instances. This solution identifies features in the removal volumes, where the engagement conditions are not changing or changing predictably. This leads to significant reductions in the number of Boolean operations that are executed during the extraction of TWEs and associated parameters required for modeling a turning process. TWE extraction is a critical component of a virtual turning system currently under development.


Sign in / Sign up

Export Citation Format

Share Document