Measurement and Analysis of Static Pressure Field in a Torque Converter Pump

1995 ◽  
Vol 117 (1) ◽  
pp. 109-115 ◽  
Author(s):  
R. R. By ◽  
B. Lakshminarayana

In this paper, the static pressure field and performance parameters of a torque converter pump are measured, analyzed, and interpreted under three turbine/pump speed ratio conditions (0, 0.6, and 0.8). A potential flow code is used to predict the static pressure distribution. Results show that: 1) centrifugal force has a dominant effect on the static pressure rise in the pump; 2) the static pressure field is generally poor at the core section; and 3) the potential flow code can fairly well predict the static pressure distribution at the blade mid-span, but not at the core and shell sections.

1995 ◽  
Vol 117 (3) ◽  
pp. 473-478 ◽  
Author(s):  
R. R. By ◽  
B. Lakshminarayana

In this paper, the static pressure field and performance parameters of a torque converter turbine are measured, analyzed, and interpreted under three speed ratio conditions (0, 0.6, and 0.8). A proven measurement technique was developed for the steady-state measurement of static pressures in the turbine. Results show that: 1) the static pressure field is generally poor at the core section; 2) centrifugal force has the dominant effect on the static pressure drop in the turbine at SR = 0.6 and SR = 0.8; and 3) the static pressure loss due to viscous effects and due to the diffusion of the relative velocity is very pronounced at SR = 0.


Author(s):  
J. Gadea ◽  
R. De´nos ◽  
G. Paniagua ◽  
N. Billiard ◽  
C. H. Sieverding

This paper focuses on the experimental investigation of the time-averaged and time-resolved pressure field of a second stator tested in a one and a half stage high-pressure transonic turbine. The effect of clocking and its influence on the aerodynamic and mechanical behaviour are investigated. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Pneumatic probes located upstream and downstream of the second stator provide the time-averaged component of the pressure field. For the second stator airfoil, both time-averaged and time-resolved surface static pressure fields are measured at 15, 50 and 85% span with fast response pressure transducers. Regarding the time-averaged results, the effect of clocking is mostly observed in the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, which is likely to affect the overall performance of the airfoil. The phase-locked averaging technique allows to process the time-resolved component of the data. The pressure fluctuations are attributed to the passage of pressure gradients linked to the traversing of the upstream rotor. The pattern of these fluctuations changes noticeably as a function of clocking. Finally, the time-resolved pressure distribution is integrated along the second stator surface to determine the unsteady forces applied on the vane. The magnitude of the unsteady force is very dependent on the clocking position.


1994 ◽  
Vol 116 (2) ◽  
pp. 327-332 ◽  
Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGVs) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGVs and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainstream flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGVs upstream of the seal gap and was found to affect ingestion significantly. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton three-dimensional C.F.D. computer code was used to predict the smoothed time-dependent pressure field for the rotor together with the pressure distribution downstream of the NGVs. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGVs were found to reduce mainstream ingestion seal flow rates significantly, but a small level of ingestion existed even for very high levels of seal flow rate.


Author(s):  
Peng Shan ◽  
Jingyuan Wang ◽  
Zhentao Lv

A new aerodynamic design strategy of the S-shaped transition duct between two compressor components was studied. Based on the controlled wall pressure gradient distribution and the wall velocity distribution, a semi-inverse problem of the transition duct was proposed, the corresponding inverse and direct approach codes were developed. To verify the feasibility of this method, two axial-centrifugal compressor transition ducts were designed. The results show that the static pressure distribution on the inner wall and the duct geometry both can be controlled freely by adjusting the inverse design parameters. The designed inner wall pressure distribution can be realized through a numerical matching procedure of the outer wall geometry based on the direct problem. The new design method is practicable that, without searching the optimal solution of the static pressure distribution of the inner wall, the total pressure coefficient can be at least 0.92.


2014 ◽  
Vol 7 (4) ◽  
pp. 293-297 ◽  
Author(s):  
David Pomarino ◽  
Andrea Pomarino

In literature, one finds little scientific statements regarding plantar static pressure distribution in healthy individuals. Miscellaneous studies, however, characterize pathologies of feet and associate those with abnormal static or dynamic plantar load sharing. Our study reveals that healthy individuals show significant age-dependent differences in forefoot and rear foot load measured in standing position. The forefoot and rear foot load of 238 female and 193 male individuals aged between 2 and 69 years were measured. Using a pressure distribution measurement platform, the measurements were taken barefooted in standing position. Those measurements are presented as percentage of the overall load. The measurements within the age groups A1 (2-6 years), A2 (7-10 years), and A3 (11-69 years) showed significantly different forefoot loading means of the left foot (A1, 19.9%; A2, 28.2%; A3, 39.7%) and the right foot (A1, 22.6%; A2, 29.7%; A3, 39.6%). The forefoot loadings are graphically displayed as a function of the percentiles 5, 10, 25, 50, 75, 90, and 95. Forefoot loadings are referred to as “prominent” if the measured values lie off the interquartile range; if either below the percentile 10 or above 90 the loadings are referred to as “very prominent.” Our study contains significant data regarding the extent of the static load sharing of the forefoot and rear foot of healthy individuals; the data are suited for being standard values to evaluate plantar load sharing. Levels of Evidence: Diagnostic Level IV: Case series


1980 ◽  
Vol 31 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Edward G.U. Band ◽  
Peter R. Payne

SummaryThe classic equations for inviscid flow about an ellipsoid are employed to compute the corresponding static pressure distribution which can then be applied to a number of practical problems. The tension in the skin of a dirigible, the gross pressure distribution around a man in an open ejection seat, the aerodynamic lift on an air cushion vehicle, automobile or high speed boat, the “squatting” of a ship, are all examples of practical applications. A remarkable result from the theory is that the lowest pressure, that around the equator normal to the flow, is always constant around the equator, no matter how much disparity there is between the semi-axes b and c.


Sign in / Sign up

Export Citation Format

Share Document