Computer-Aided Simulation of Piston and Piston Ring Dynamics

1996 ◽  
Vol 118 (4) ◽  
pp. 880-886 ◽  
Author(s):  
G. Knoll ◽  
H. Peeken ◽  
R. Lechtape-Gru¨ter ◽  
J. Lang

A numerical computer simulation program was developed, aiding in finding optimum design parameters in the multibody-system piston, piston-rings, and cylinder with respect to optimum sealing, minimal friction, and minimum noise stimulation (impact impulse). In the simulation of piston secondary movement and piston ring motion, forces arising from the combustion process, subsonic/supersonic gas flow between the combustion chamber and the crank case, inertial forces and forces resulting from the hydrodynamic lubrication between cylinder liner and piston shaft and piston rings and between piston ring flanks and piston grooves are considered. In addition it is possible to account for effects of global, three-dimensional ring deformation as well as local piston deformation, roughness effects in lubricated contacts, and variable viscosity and variable oil supply. The governing differential equations for the pressure as well as the deformation are solved via finite element techniques, while initial value problems are solved by efficient implicit time integration schemes. The application of the developed computer code is presented in examples.

2015 ◽  
Vol 21 (4) ◽  
pp. 66-78 ◽  
Author(s):  
Grzegorz Koszałka ◽  
Mirosław Guzik

Abstract This paper presents a mathematical model of piston-rings-cylinder sealing (TPC) of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.


2009 ◽  
Vol 137 (2) ◽  
pp. 128-141
Author(s):  
Andrzej WOLFF

In the paper a model of a piston ring pack motion on an oil film has been analysed. The local oil film thickness can be compared to height of the combined roughness of mating surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng [6, 7] and Greenwood, Tripp [3] have been combined [12] and used in this paper. A model of a gas flow through the labyrinth seal of piston rings has been developed [13, 15]. In addition models of ring twist effects and axial ring motion in piston grooves have been applied [14, 15]. In contrast to the previous papers of the author, an experimental verification of the main parts of developed mathematical model and software has been presented. A relatively good compatibility between the experimental measurements and calculated results has been achieved. In addition this study presents the simulation results for an automobile internal combustion engine


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Gonzalo Brito Gadeschi ◽  
Katja Backhaus ◽  
Gunther Knoll

In this work, the performance of barrel-shaped laser-textured piston rings is numerically investigated. The surface texture, parameterized by the dimple density, dimple depth, and dimple distribution pattern, is optimized to minimize the friction coefficient for piston rings of variable curvature. We consider fully textured as well as partially textured piston rings with two different dimple distributions patterns: a central dimple distribution, and a distribution along the piston ring edges. Finally, the sensitivity of the optimal surface parameters to the piston ring curvature is assessed.


1981 ◽  
Vol 23 (6) ◽  
pp. 295-304 ◽  
Author(s):  
B. L. Ruddy ◽  
D. Dowson ◽  
P. N. Economou

The established orifice and volume method for predicting the gas pressures between piston rings in reciprocating machines is extended to take account of the energy loss due to wall friction in the circumferential gas flow between the piston and cylinder liner. The results show that such energy losses are significant when gas flow rates exceed 10-2 kg/s and that this is most likely to occur in engines of over 0·5 m bore with worn piston rings. Under these conditions the angular displacement of the ring gaps significantly affects ring pack gas flow. In particular, it is shown that the maximum resistance to the flow of gas through the ring pack occurs when adjacent ring gaps are separated by more than 90 degrees. In the analysis of piston ring lubrication in ring packs it is necessary to ascertain the inter-ring pressures and the present paper enables such pressures to be determined with greater accuracy and for a wider range of engines.


2013 ◽  
Vol 871 ◽  
pp. 27-31
Author(s):  
Shi Feng Zhang ◽  
Shu Hua Cao ◽  
Jiu Jun Xu

This paper constructs a three-dimensional transient hydrodynamic lubrication model for cylinder liner-piston ring based on the three-dimensional transient average Reynolds equation and asperity contact model. A computer program was written with FORTRAN to calculate hydrodynamic lubrication, in which the surface roughness, the variable viscosity effect and the deformation of the circumferential direction of the cylinder liner are taken into account. The film pressure distribution in different crank angle during the stroke, minimum film thickness and friction are computed and analyzed with this program. This three-dimensional transient hydrodynamic lubrication model provides a design basis for the friction analysis of cylinder liner-piston ring.


2017 ◽  
Vol 170 (3) ◽  
pp. 164-170
Author(s):  
Andrzej WOLFF

In the paper a comprehensive model of a piston ring pack motion on an oil film has been presented. The local thickness of the oil film can be compared to height of the combined surface roughness of a cylinder liner and piston rings. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been combined and used in this paper. In addition a model of gas flow through the labyrinth seal of piston rings has been developed. The main parts of the model and software have been experimentally verified abroad by the author at the marine engine designing centre. For the selected two-stroke marine engine, the influence of the number of piston rings used and the type of the top ring lock (straight or overlapped) on blowby to piston underside and on friction losses of the piston-ring-cylinder (PRC) system have been investigated. The developed model and software can be useful for optimization of the PRC system design


Author(s):  
H. Xu ◽  
M. Kim ◽  
D. Dardal ◽  
M. D. Bryant ◽  
R. D. Matthews ◽  
...  

The influence of piston ring lubrication on internal combustion engine performance has received considerable attention for over half-century. Studies show that hydrodynamic lubrication prevails through most of engine cycles, and asperity contact only occurs near the vicinity of dead centers [1][2]. In order to solve the governing equation of lubricant, appropriate velocity and pressure boundary conditions should be incorporated into the lubrication equation - Reynolds equation. While lubricant obeys the no-slip velocity boundary condition, the pressure boundaries at the leading and trail edge of piston ring are related to the chamber and the inter-ring crevice gas pressures. A complete lubrication analysis of piston ring requires an inter-ring gas flow model. In most of existing lubrication models, an isentropic orifice flow model is adopted and the gas flow is assumed to an ideal gas passing through the piston ring end gaps with a constant discharge coefficient [2][3][4][5]. In additional to the flow path of piston ring end gaps, gas also flows through the side-clearance between piston ring and flank groove [6][7][8][9][10]. In this paper, a quasi-Rayleigh narrow-channel gas flow model is proposed by consideration of temperature gradient along radial direction of piston assembly. Piston ring friction force is estimated by a test-rig verified mixed lubrication model [11]. Numerical simulation shows that piston ring friction force and ring axial motion are sensitive to inter-ring gas flow model. The instantaneous indicated mean effective pressure (IMEP) method was adopted here to measure the piston friction during motoring condition. Experimental and numerical results indicate that top ring could contribute about 10% of total power cylinder friction loss.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


Sign in / Sign up

Export Citation Format

Share Document