Power Augmentation of a HAWT by Mie-type Tip Vanes, considering Wind Tunnel Flow Visualisation, Blade-Aspect Ratios and Reynolds Number

2003 ◽  
Vol 27 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

Wind tunnel results are reported concerning the effects of blade aspect ratio and Reynolds number on the performance of a horizontal axis wind turbine (HAWT) with Mie-type1 tip attachments. The flow behaviour around the blade tips and the Mie-type tip vanes is presented. Detailed surface oil film visualization and velocity measurements around the blade tips, with and without Mie vanes, were obtained with the two-dimensional, Laser-Doppler Velocimetry method. Experiments were performed with rotors having blades with different aspect ratio and operating at different Reynolds numbers. The properties of the vortices generated by the Mie vanes and the blade tips were carefully studied. It was found that increased power augmentation by Mie vanes is achieved with blades having smaller aspect ratio and smaller Reynolds number.

Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


1995 ◽  
Vol 117 (2) ◽  
pp. 219-226 ◽  
Author(s):  
D. M. Rooney ◽  
J. Rodichok ◽  
K. Dolan

Wind tunnel tests were undertaken at subcritical Reynolds numbers to determine the vortex shedding characteristics behind a pair of finite circular cylinders at distances from one to six diameters apart and at all angles to one another. In addition, individual finite cylinders with aspect ratios 0.67 ≤ L/D ≤ 11.33 were examined to determine the effect of aspect ratio on shedding frequency, and to measure the frequency of the tip vortex when it is present. Aspect ratio was found to be a significant factor in the difference between shedding frequencies of the two cylinders at oblique angles. It was also found that “lock-on” of the two frequencies occurred when longer aspect ratio cylinders were upstream of shorter ones, but not in the reverse case.


2016 ◽  
Vol 799 ◽  
Author(s):  
John N. Fernando ◽  
David E. Rival

Impulsively started, low-aspect-ratio elliptical flat plates have been investigated experimentally to understand the vortex pinch-off dynamics at transitional and fully turbulent Reynolds numbers. The range of Reynolds numbers investigated is representative of those observed in animals that employ rowing and paddling modes of drag-based propulsion and manoeuvring. Elliptical flat plates with five aspect ratios ranging from one to two have been considered, as abstractions of propulsor planforms found in nature. It has been shown that Reynolds-number scaling is primarily determined by plate aspect ratio in terms of both drag forces and vortex pinch-off. Due to vortex-ring growth time scales that are longer than those associated with the development of flow instabilities, the scaling of drag is Reynolds-number-dependent for the aspect-ratio-one flat plate. With increasing aspect ratio, the Reynolds-number dependency decreases as a result of the shorter growth time scales associated with high-aspect-ratio elliptical vortex rings. Large drag peaks are observed during early-stage vortex growth for the higher-aspect-ratio flat plates. The collapse of these peaks with Reynolds number provides insight into the evolutionary convergence process of propulsor planforms used in drag-based swimming modes over diverse scales towards aspect ratios greater than one.


Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
H.-W. Dai ◽  
Liwu Fan

Computational analysis of transient phenomenon followed by the periodic state of laminar flow and heat transfer due to a rectangular rotating object in a square cavity is investigated. A finite-volume-based fixed-grid/sliding mesh computational methodology utilizing primitive variables is used. Rectangular rotating objects with different aspect ratios (AR = 1, 2, 3, 4) are placed in the middle of a square cavity. The motionless object is set in rotation at time t = 0 with a constant angular velocity. For the insulated and isothermal objects, the cavity is maintained as differentially-heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow field is not affected by the Taylor instabilities (Ta < 1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners and the periodic channelling effect of the traversing vertices are clearly elucidated. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasi-periodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated to the rotational Reynolds number and the aspect ratio of the rectangle. For high Re numbers, the performance of the system is independent of the aspect ratio. On the other hand, with lowering of the hydraulic diameter (i.e. bigger objects), objects with the highest and lowest aspect ratios exhibit the highest and lowest heat transfer, respectively. High intensity of the periodic channelling and not its frequency are identified as the cause of the observed enhancement.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45 deg to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100–0.058 for AR 1:1–1:6, respectively. The experiments span a Reynolds number range of 4000–130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


1993 ◽  
Vol 37 (04) ◽  
pp. 331-341
Author(s):  
R. G. J. Flay ◽  
D. C. McMillan

Measurements of side force and drag on models of various yacht hull/keel combinations in a wind tunnel are presented. The accuracy of the resulting side force measurements was verified by comparing results for two of the standard configurations with towing tank data from geometrically identical models at the same Reynolds number. The agreement between the results was excellent. Measurements from the models were then compared with the predictions of five different methods for a range of keel to canoe body draft ratios from 2.27 to 5.56. It was found that there was considerable variation in the predictions of the various methods, but that the wind tunnel results fell at the center of the range of predicted values. Effective aspect ratios were estimated from induced drag measurements and were found to be in excess of twice the geometric aspect ratio of the keels, reducing as heel increased to 30 deg.


1985 ◽  
Vol 107 (4) ◽  
pp. 495-499 ◽  
Author(s):  
Jae Min Hyun

An investigation is made of flows of a viscous incompressible fluid inside a circular cylindrical tank. The flow is driven by the spinning bottom endwall disk of the tank. Numerical solutions of the Navier-Stokes equations were obtained over a range of rotational Reynolds number and of aspect ratio (cylinder height/radius) using two kinds of boundary condition at the top: a closed tank with a rigid lid and an open tank with a free surface. We provide descriptions of flow details for these two boundary conditions at the top. For small aspect ratios, the nature of the azimuthal flow is distinctly different depending on the type of the top boundary condition, i.e., a Couette flow under a rigid lid and a solid-body rotation under a free surface. These qualitative flow patterns are insensitive to the Reynolds number. For flows with a finite aspect ratio and at small Reynolds numbers, the change in the top boundary condition has little impact on the flow. For flows with a finite aspect ratio and at large Reynolds numbers, the prevailing flow patterns are of boundary layer-type. At a given vertical level, the angular velocity attains a larger value under a free surface than under a rigid lid.


2014 ◽  
Vol 695 ◽  
pp. 384-388
Author(s):  
Nor Azwadi Che Sidik ◽  
A.S. Ahmad Sofianuddin ◽  
K.Y. Ahmat Rajab

In this paper, Constrained Interpolated Profile Method (CIP) was used to simulate contaminants removal from square cavity in channel flow. Predictions were conducted for the range of aspect ratios from 0.25 to 4.0. The inlet parabolic flow with various Reynolds number from 50 to 1000 was used for the whole presentation with the same properties of contaminants and fluid. The obtained results indicated that the percentage of removal increased at high aspect ratio of cavity and higher Reynolds number of flow but it shows more significant changes as increasing aspect ratio rather than increasing Reynolds number. High removal rate was found at the beginning of the removal process.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Sign in / Sign up

Export Citation Format

Share Document