A novel heat sink design for simultaneous heat transfer enhancement and pressure drop reduction utilizing porous fins and magnetite ferrofluid

2019 ◽  
Vol 29 (9) ◽  
pp. 3128-3147 ◽  
Author(s):  
Mojtaba Bezaatpour ◽  
Mohammad Goharkhah

Purpose With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally accompanied by undesirable increase of pressure drop and consequently a pumping power penalty. The current study aims to present a novel and easy method to manufacture a mini heat sink using porous fins and magnetite nanofluid (Fe3O4/water) as the coolant for simultaneous heat transfer enhancement and pressure drop reduction. Design/methodology/approach A three-dimensional numerical study is carried out to evaluate the thermal and hydrodynamic performance of the mini heat sink at different volume fractions, porosities and Reynolds numbers, using finite volume method. The solver specifications for discretization of the domain involve the SIMPLE, second-order upwind and second order for pressure, momentum and energy, respectively. Findings Results show that porous fins have a favorable effect on both heat transfer and pressure drop compared to solid fins. Creation of a virtual velocity slip on the channel-fin interfaces similar to the micro scale conditions and the flow permeation into the porous fins are the main mechanisms of pressure drop reduction. On the other hand, the heat transfer enhancement is attributed to the increase of the solid-fluid contact area and the improvement of the flow mixing because of the flow permeation into the porous fins. An optimal porosity for maximum convective heat transfer enhancement is obtained as a function of Reynolds number. However, taking both pressure drop and heat transfer effects into account, the overall heat sink performance is shown to be improved at high of Reynolds numbers, volume fractions and fin porosities. Research limitations/implications Thermal radiation and gravity effects are ignored, and thermal equilibrium is assumed between solid and fluid phases. Originality/value A maximum of 32 per cent increase of convective heat transfer is achieved along with a maximum of 33 per cent reduction in the pressure drop using porous fins and ferrofluid in heat sink.

1998 ◽  
Vol 120 (2) ◽  
pp. 342-347 ◽  
Author(s):  
B. A. Jubran ◽  
M. S. Al-Haroun

This paper reports an experimental investigation to study the effects of using various designs of secondary air injection hole arrangements on the heat transfer coefficient and the pressure drop characteristics of an array of rectangular modules at different values of free-stream Reynolds numbers in the range 8 × 103 to 2 × 104. The arrangement used is either one staggered row of simple holes or one row of compound injection holes. The pitch distances between the injection holes, as well as the injection angles, were varied in both the streamwise and spanwise directions. Generally, the presence of secondary air through the injection hole arrangement can give up to 54 percent heat transfer enhancement just downstream of the injection holes. The amount of heat transfer enhancement and pressure drop across the electronic modules is very much dependent on the design of the injection holes. The simple angle injection hole arrangement tends to give a better heat transfer enhancement and less pressure drop than the compound angle holes.


2003 ◽  
Vol 125 (4) ◽  
pp. 587-594 ◽  
Author(s):  
S. W. Moon ◽  
S. C. Lau

Experiments have been conducted to study steady heat transfer between two blockages with holes and pressure drop across the blockages, for turbulent flow in a rectangular channel. Average heat transfer coefficient and local heat transfer distribution on one of the channel walls between two blockages, and overall pressure drop across the blockages were obtained, for nine different staggered arrays of holes in the blockages and Reynolds numbers of 10,000 and 30,000. For the hole configurations studied, the blockages enhanced heat transfer by 4.6 to 8.1 times, but significantly increased the pressure drop. Smaller holes in the blockages caused higher heat transfer enhancement, but larger increase of the pressure drop than larger holes. The heat transfer enhancement was lower in the higher Reynolds number cases. Because of the large pressure drop, the heat transfer per unit pumping power was lower with the blockages than without the blockages. The local heat transfer was lower nearer the upstream blockage, the highest near the downstream blockage, and also relatively high in regions of reattachment of the jets leaving the upstream holes. The local heat transfer distribution was strongly dependent on the configuration of the hole array in the blockages. A third upstream blockage lowered both the heat transfer and the pressure drop, and significantly changed the local heat transfer distribution.


Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sunden

Purpose – The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls. Design/methodology/approach – Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs. Findings – The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs. Research limitations/implications – The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary. Practical implications – New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance. Originality/value – The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.


Author(s):  
Zhi-Min Yao ◽  
Zhi-Gang Feng ◽  
Zuo-Qin Qian ◽  
Zhi-Zhe Chen

Heat transfer rate and pressure drop of turbulent flows of water in a smooth-wall tube and five corrugated tubes at Reynolds numbers between 7,500 and 50,000 are studied using the commercial software FLUENT. The corrugated tube is constructed by placing protruded ridges evenly along a tube. Depending on the different design of corrugated tubes, our numerical simulation results show that the use of corrugated tubes can improve heat transfer rate by a factor of 1.5 to 2 at Reynolds numbers between 7,500 and 12,000 when compared to a smooth-wall tube. However, the rate of enhancement gradually decreases to a factor of 1.1 to 1.5 as flow Reynolds number increases to 50,000. We further studied the pressure drop and friction factors of the corrugated tube. For the corrugated tube with the highest heat transfer enhancement, we found the pressure drop increases by a factor of 3 to 4 compared to a smooth-wall tube, while the friction factor increases by a factor of 3.5 to 4.4. These findings can be very useful in the design of more efficient heat exchangers.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Shailesh Kumar Sarangi ◽  
Dipti Prasad Mishra ◽  
Praveen Mishra

AbstractThis paper numerically investigates the heat transfer enhancement using rectangular winglet pairs in a fin-and-tube type heat transfer surface having five inline rows of tubes. The influence of number of winglets, attack angles of the winglets, and their location has been analyzed under laminar flow conditions with Reynolds number ranging 400–1500. To account for the combined effect of heat transfer enhancement and pressure drop penalty, an enhancement factor is also discussed by changing the winglet pair's number and location. The numerical results show that pressure drop can be reduced significantly by placing the winglet more toward the exit of the flow channel. Streamwise distance and spanwise distance of the winglet pairs have been investigated for maximum enhancement factor. The numerically obtained results show that the winglets number and their placement at different locations have a major influence on enhancement factor. The results show that both the heat transfer and the pressure drop increase with an increase in attack angle of the winglets and best angle for the highest enhancement factor has been found out. Correlations have been developed for streamwise distance, spanwise distance, and angle of attack for different range of Reynolds numbers.


Author(s):  
Ashkan Oghabi ◽  
Davood Ghadiri Moghaddam ◽  
Carey Simonson ◽  
Robert W. Besant

In liquid-to-air membrane energy exchangers (LAMEEs), the heat and mass transfer resistances in the air channel are dominant. An eddy promoter air screen can effectively enhance the heat and mass transfers in the air channel. In this study, the heat transfer enhancement and pressure drop across three different eddy promoter air screens in an air channel are experimentally investigated. Eddy promoter air screens are comprised of plastic ribs in the stream-wise direction and aluminum cross-bars normal to the air flow direction. A low speed wind tunnel test facility, which simulates the air channel of a LAMEE is designed to measure the friction factor and enhanced convective heat transfer coefficient in the air channel with an eddy promoter air screen. Tests were conducted at Reynolds numbers of 920, 1550, and 2160. In this paper, the effects of the spacing of the cylindrical bars and plastic ribs on the heat transfer performance are studied experimentally. Also, the performance of eddy promoter air screens as a function of enhanced heat transfer coefficient and increased pressure drop is investigated. Results show that the eddy promoter air screens have the highest efficiencies at Reynolds of 1550 and double the convective heat transfer coefficient of the air with respect to a smooth channel.


Author(s):  
Evan Small ◽  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

In a design competition by the mechanical engineering students at Carnegie Mellon University, which was the design of heat sinks for electronic cooling applications, twenty seven heat sinks were designed and tested for thermal performance. A heat sink with three rows of 9, 8, and 9 dimpled rectangular fins (staggered configuration) demonstrated the best performance in the test. This heat sink even had the least total volume (about 25% less than the set value). This paper reports on an effort made to verify and quantify the role of dimples on heat transfer enhancement of the heat sinks. This includes measurements and simulations of the thermal fluid properties of the heat sinks with and without dimples. Results of both the measurements and simulations indicate that dimples do in fact improve heat transfer capability of the heat sinks. Albeit, dimpled fins cause more pressure drop in air along the heat sink. Keeping the total volume of the heat sink and the height of the fins constant and changing the number of the fins and their arrangement show that there exist an optimum number of fins for the best performance of the heat sink. However, this number of fins is different for inline and staggered arrangements. To check the role of the roughness type on the heat transfer behavior of the fins, a heat sink with twenty-seven bumped fins with inline arrangement was also simulated. Results indicated that bumps increase both thermal resistance and pressure drop relative to that of the heat sinks with plain fins.


2008 ◽  
Author(s):  
S. G. Bhatta ◽  
T. R. Seetharam

A three dimensional study of heat transfer from an array of heated blocks is presented. Heated blocks represent electronic modules mounted on horizontal circuit board in a rectangular channel. Numerically obtained average heat transfer coefficients for the top surface of the heated blocks are compared with experimentally obtained values, and it is found that there is a good agreement between the two at lower Reynolds numbers, 7600 to 22000. Further, the horizontal module board affixed with heated modules is swiveled upwards longitudinally in the vertical plane about the front end of the plate for the same Reynolds numbers. The influence of angle of orientation of the heated bottom plate on the heat transfer enhancement from the heated modules is studied, and it is observed that there is a remarkable improvement in heat transfer even for low angle of swivel. It is observed that heat transfer enhancement is accompanied with a penalty in terms of increase in pressure drop; and for low angle of swivel, the pressure drop increase is noted to be moderate.


Sign in / Sign up

Export Citation Format

Share Document