Mathematical Models for 3D Analysis of Rotary Steering BHA Under Small Deflection

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Li Zifeng ◽  
Li Jingyuan

A new type of rotary steering stabilizer used in a common rotary bottom hole assembly (BHA) to control well path was developed. In order for design and use of this kind of BHA, mathematical models were proposed for 3D mechanical analysis of rotary steering BHA with small deflection. The mathematical models include (1) differential equations; (2) boundary conditions of drill bit, stabilizer, diameter change, tangent point, and bore hole wall; (3) methods for calculating lateral forces and deflection angles of the bit; and (4) models for determining navigation ability and navigation parameters. As an example, a given rotary steering BHA was studied.

2018 ◽  
Vol 24 (22) ◽  
pp. 5213-5224
Author(s):  
He Zhang ◽  
Qinfeng Di ◽  
Wenchang Wang ◽  
Feng Chen ◽  
Wei Chen

In the air drilling process, the pre-bent pendulum bottom hole assembly (PBP-BHA) has excellent performance in controlling the well deviation and improving the wellbore quality, but the mechanism that is closely related to the dynamics of the PBP-BHA has not been ascertained. In this paper, an effective technique combining the weighted residuals method with the finite element method is presented to study the PBP-BHA lateral vibration. First, a three-dimensional nonlinear static model of pre-bent BHA is established under small deformation condition and solved by the weighted residuals method and optimization method, so as to define the tangent point according to the deformation characteristics of the PBP-BHA. This tangent point determines the end of the effective PBP-BHA length that starts from the drill bit. Subsequently, the finite element model of PBP-BHA is established to solve the lateral natural frequencies and mode shapes of the PBP-BHA. After considering the borehole wall constraint, the modal superposition technique is used to obtain the steady dynamic responses of the PBP-BHA. Meanwhile, the dynamic performance of the PBP-BHA used in the actual air drilling process is calculated to obtain its critical speeds and working status chart. The critical speeds of the PBP-BHA are 80 r/min and 190 r/min, which are far away from the surface rotary speed in the actual drilling site. Through comparing with the dynamic characteristics of regular BHA with the same structural parameters, it is discovered that the bend angle in the PBP-BHA plays a crucial role in improving the dynamic performance of the PBP-BHA. Moreover, the technique presented in this study can be used to make a reasonable design of BHA configuration and optimize drilling parameters.


2021 ◽  
Author(s):  
Krzysztof Karol Machocki ◽  
Abdulwahab Aljohar ◽  
David Zhan ◽  
Ayodeji Abegunde

Abstract A new down hole system and method to use for releasing stuck pipes is presented. New system design, features and limits are compared to commonly used techniques for releasing stuck pipe showing benefits of the new system when dealing with differential stuck pipe incidents. The new down hole system is capable to deliver much greater forces when compared to jars and other down hole accelerators near the stuck point. This system can generate over 40G`s lateral forces continuously down the hole acting on the stuck pipe area. The system can be integrated into a Bottom Hole Assembly (BHA) and activated once drill string become stuck or run as a part of the remediate assembly. Different aspects of two types of assemblies are described outlining the benefits and drawbacks. The author will discuss in details the background and rationale to the new technology, including a review of differential sticking challenges and functionality of this new system. The new system was compared to the most commonly used techniques for releasing differentially stuck pipe. Previously not releasable stuck pipe forces of over 1,000,000 lb. can now be overcome with the presented new approach to generate down hole forces near the stuck place. Flexibility in system integration and deployment allows for further optimization in BHA design and cost affective fishing operations in dedicated hole sections. This new approach can be implemented to release the most challenging stuck pipe mechanisms in drilling to minimize NPT and cost associated with stuck pipe, remedial operations and sidetracks. Similar approach can be utilized to release differentially stuck pipes, tubing and completions. The novelty of this stuck pipe release system is the entire down hole system and operations of the overall system using new approach to generate large shocks down the hole. Additional novelty is related to flexibility during integration and deployment of this system. Similar to current shock tools, this system can be placed in BHA, fishing type assemblies and also pumped down inside of the stuck drill string to save time and cost.


Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2021 ◽  
Author(s):  
Shilin Chen ◽  
Chris Propes ◽  
Curtis Lanning ◽  
Brad Dunbar

Abstract In this paper we present a new type of vibration related to PDC bits in drilling and its mitigation: a vibration coupled in axial, lateral and torsional directions at a high common frequency (3D coupled vibration). The coupled frequency is as high as 400Hz. 3D coupled vibration is a new dysfunction in drilling operation. This type of vibration occurred more often than stick-slip vibration. Evidences reveal that the coupled frequency is an excitation frequency coming from the bottom hole pattern formed in bit/rock interaction. This excitation frequency and its higher order harmonics may excite axial resonance and/or torsional resonance of a BHA. The nature of 3D coupled vibration is more harmful than low frequency stick-slip vibration and high frequency torsional oscillation (HFTO). The correlation between the occurrence of 3D coupled vibration and bit design characteristics is studied. Being different from prior publications, we found the excitation frequency is dependent on bit design and the occurrence of 3D coupled vibration is correlated with bit design characteristics. New design guidlines have been proposed to reduce or to mitigate 3D coupled vibration.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


2011 ◽  
Author(s):  
Zimuzor Michael Okafor ◽  
Andrew John Buchan ◽  
Dmitry Diyanov ◽  
Sheldon Andre Rawlins ◽  
Grigoriy Zhadan ◽  
...  

2021 ◽  
Author(s):  
Stephen Fleming ◽  
Roberto Ucero ◽  
Yuliya Poltavchenko

Abstract After analyzing the historical data of neighboring wells adjacent to the drilling site, 11 bit trips were required due to the low mechanical performance of the bottom hole assembly elements. This observation is based on maximum circulation hours and low helical bucking values that make it uneconomic to drill the sections with a positive displacement motor drive system. A redesign the bottom hole assembly was proposed to achieve an improved mechanical performance which allowed the section to be drilled with a single assembly. With a focus on increasing the mechanical limitations of the downhole elements, the use of 4 ¾" equipment is considered instead of the 3 ½" standard equipment used in this hole size. One of the biggest challenges was modifying the 4 ¾" positive displacement motor (PDM) to fit into the 5 ½" hole given that the mud motor has a maximum unmodified diameter of 5 ½". Using the force analysis module of a State-of-the-art BHA modelling software suite, multiple iterations were performed to simulate and validate an alternative PDM design and accompanying directional assembly. This new design featured modifications to an existing 4 ¾" PDM deploying a long gauge bit in combination with a fit for purpose measurement while drilling system. After numerous runs using this assembly design, it was found that there was no additional or unexpected wear of the modified Mud Motor components or associated elements of the downhole equipment. These observations act to validate the pre-job engineering force analysis. With the improved mechanical specifications of the 4 ¾" Bottom Hole Assembly (BHA) components, circulating hours were increased from 100 hours to 250+ hours in a stepwise process. This enabled drilling of the entire 5 ½" section with a single BHA, comparing favorably to the legacy approach with an average of eleven bit runs. The modified 4 ¾" PDM coupled with long gauge bit technology enabled a reduction in the oriented to rotate drilling ratio and an associated increase in the overall rate of penetration (ROP). It can be concluded that the substitution of 4 ¾" drilling equipment for 3 ½" in the 5 ½" hole section, increased the drilling efficiency between 30-50% according to field data obtained in Ukraine. The modified 4 ¾" PDM combined with long gauge bit technology has the potential to improve 5 ½" hole drilling performance in other locations. Following a structured planning process using State-of-the-art BHA modelling software suite enabling the evaluation of the significant forces that act in the drilling assembly and so significantly reducing the risks associated with exceeding the original design limits of the assembly. By improving the mechanical performance of the drilling assembly in a 5 ½" hole, new territory for drilling engineers and design engineers is now available to increase the drilling performance in slim wellbores.


Sign in / Sign up

Export Citation Format

Share Document