scholarly journals An Evaluation of Ploughing Models for Orthogonal Machining

1999 ◽  
Vol 121 (4) ◽  
pp. 550-558 ◽  
Author(s):  
D. J. Waldorf ◽  
R. E. DeVor ◽  
S. G. Kapoor

An analytical comparison is made between two basic models of the flow of workpiece material around the edge of an orthogonal cutting tool during steady-state metal removal. Each has been the basis for assumptions in previous studies which attempt to model the machining process, but no direct comparison had been made to determine which, if either, is an appropriate model. One model assumes that a separation point exists on the rounded cutting edge while the other includes a stable build-up adhered to the edge and assumes a separation point at the outer extreme of the build-up. Theories of elastic-plastic deformation are employed to develop force predictions based on each model, and experiments are performed on 6061-T6 aluminum alloy to evaluate modeling success. The experiments utilize unusually large cutting edge radii to isolate the edge component of the total cutting forces. Results suggest that a material separation point on the tool itself does not exist and that the model that includes a stable build-up works better to describe the experimental observations.

Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 197 ◽  
Author(s):  
ZeJia Zhao ◽  
Suet To ◽  
ZhuoXuan Zhuang

The formation of serrated chips is an important feature during machining of difficult-to-cut materials, such as titanium alloy, nickel based alloy, and some steels. In this study, Ti6Al4V alloys with equiaxial and acicular martensitic microstructures were adopted to analyze the effects of material structures on the formation of serrated chips in straight line micro orthogonal machining. The martensitic alloy was obtained using highly efficient electropulsing treatment (EPT) followed by water quenching. The results showed that serrated chips could be formed on both Ti6Al4V alloys, however the chip features varied with material microstructures. The number of chip segments per unit length of the alloy with martensite was more than that of the equiaxial alloy due to poor ductility. Besides, the average cutting and thrust forces were about 8.41 and 4.53 N, respectively, for the equiaxed Ti6Al4V alloys, which were consistently lower than those with a martensitic structure. The high cutting force of martensitic alloy is because of the large yield stress required to overcome plastic deformation, and this force is also significantly affected by the orientations of the martensite. Power spectral density (PSD) analyses indicated that the characteristic frequency of cutting force variation of the equiaxed alloy ranged from 100 to 200 Hz, while it ranged from 200 to 400 Hz for workpieces with martensites, which was supposedly due to the formation of serrated chips during the machining process.


Author(s):  
Xiaoliang Jin

The contact between the tool flank wear land and wavy surface of workpiece causes energy dissipation which influences the tool vibration and chatter stability during a dynamic machining process. The process damping coefficient is affected by cutting conditions and constitutive property of workpiece material. This paper presents a finite element model of dynamic orthogonal cutting process with tool round edge and flank wear land. The process damping coefficient is identified based on the energy dissipation principle. The simulated results are experimentally validated.


Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Ibrahim Deiab ◽  
Hossam Kishawy

Metal-cutting process deals with the removal of material using the shearing operation with the help of hard cutting tools. Machining operations are famous in the manufacturing sector due to their capability to manufacture tight tolerances and high dimensional accuracy while simultaneously maintaining the cost-effectiveness for higher production levels. As metal-cutting processes consume a great amount of input resources and generate some material-based waste streams, these processes are highly criticized due to their high and negative environmental impacts. Researchers in the metal-cutting sector are currently exploring and benchmarking different activities and best practices to make the cutting operation environment friendly in nature. These eco-friendly practices mainly cover the wide range of activities directly or indirectly associated with the metal-cutting operation. Most of the literature for sustainable metal-cutting activities revolves around the sustainable lubrication techniques to minimize the negative influence of cutting fluids on the environment. However, there is a need to enlarge the assessment domain for the metal-cutting process and other directly and indirectly associated practices such as enhancing sustainability through innovative methods for workpiece and cutting tool materials, and approaches to optimize energy consumption should also be explored. The aim of this article is to explore the role of energy consumption and the influence of workpiece and tool materials towards the sustainability of machining process. The article concludes that sustainability of the machining process can be improved by incorporating different innovative approaches related to the energy and tool–workpiece material consumptions.


Author(s):  
Thomas McLeay ◽  
Michael S Turner ◽  
Keith Worden

The most common machining processes of turning, drilling, milling and grinding concern the removal of material from a workpiece using a cutting tool. The performance of machining processes depends on a number of key method parameters, including cutting tool, workpiece material, machine configuration, fixturing, cutting parameters and tool path trajectory. The large number of possible configurations can make it difficult to implement fault detection systems without having to train the system to a particular method or fault type. The research of this article applies a novel method to detect the changing state of a process over time in order to detect faulty machining conditions such as worn tools and cutting depth changes. Unlike studies in the previous literature in this domain, an unsupervised learning method is used, so that the method can be applied in production to unfamiliar processes or fault conditions. In the case presented, novelty detection is applied to a multivariate sensor feature data set obtained from a milling process. Sensor modalities include acoustic emission, vibration and spindle power and time and frequency domain features are employed. The Mahalanobis squared-distance is used to measure discordancy of each new data point, and values that exceed a principled novelty threshold are categorised as fault conditions.


1944 ◽  
Vol 11 (3) ◽  
pp. A168-A175 ◽  
Author(s):  
M. Eugene Merchant

Abstract The author presents a mathematical analysis of the geometry and mechanics of the metal-cutting process, covering two common types of geometry which occur in cutting. This analysis offers a key for the study of engineering problems in the field of metal cutting in terms of such fundamental quantities as strain, rate of shear, friction between chip and tool, shear strength of the metal, work done in shearing the metal and in overcoming friction, etc. The two cases covered are, in essence, that of a straight-edged cutting tool moving relative to the work-piece in a direction perpendicular to its cutting edge, termed “orthogonal cutting,” and that of a similar cutting tool so set that the cutting edge is oblique to the direction of relative motion of tool and work, termed “oblique cutting.” Equations are developed which permit the calculation of such quantities as those just enumerated from readily observable values. The theoretical findings are particularly applicable and significant in the case of present-day high-speed machining operations with sintered-carbide tools.


Author(s):  
K. Ahmadi ◽  
Y. Altintas

The existing chatter stability prediction algorithms fail in low-speed machining of difficult to cut alloys, unless process damping contributed by the tool flank face–finish surface contact is considered. This paper presents a new method in predicting the material dependent process damping coefficient from chatter free orthogonal cutting tests. An equivalent process damping coefficient of the dynamic system is estimated from the frequency domain decomposition (FDD) of the vibration signals measured during stable cutting tests. Subsequently, the specific indentation force of the workpiece material is identified from the process damping coefficients obtained over a range of cutting speeds. The specific indentation force coefficient is used in an explicit formula of process damping which considers the radius and clearance angle of the cutting edge. It is experimentally shown that when the proposed process damping model is included, the accuracy of chatter stability predictions in turning and milling improves significantly at low cutting speeds.


2008 ◽  
Vol 392-394 ◽  
pp. 990-995 ◽  
Author(s):  
Hui Yue Dong ◽  
Pu Jin Huang ◽  
Y.B. Bi

Tool wear during high speed machining process plays an important role in machining cost and efficiency. The purpose of this study is to examine the impact of tribological properties of coatings on cutting performance. Finite element methods (FEM) were used to model the effect of coated and uncoated cutting tools (K10) on the machinability of the aluminum alloy 7050T7451. Uncoated, Single coated, such as TiC, TiN and Al2O3 and multi-coated tool were studied. All finite element models were assumed to be plane strain. To achieve constitutive model of Al7050T7451 under conditions of machining that high strain rate, high strain and high temperature occur, high speed impact experiment and material drawing experiment were done. Comparison of FEM results shows that the highest temperatures in tools, the temperature change rates of different tools from surface to its bulk material, and the temperatures in chips are changed greatly. It also shows that the cutting temperature of coated tool is lower than uncoated tools, but cutting forces change very little. All these results show that coatings can be used to reduce adhesion between a tool and a workpiece material. The wear resistance of coated tool can be improved effectively and tool life is increased correspondingly.


2020 ◽  
Vol 26 (5) ◽  
pp. 38-46
Author(s):  
Osama Ali Kadhim ◽  
Fathi Alshamma

This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
K. G. Saravanan ◽  
R. Prabu ◽  
A. R. Venkataramanan ◽  
Eden Tekle Beyessa

Electrochemical machining is a nonconventional machining process in which the metal removal is achieved by the electricity and chemical solution known as an electrolyte. It is the reverse electrolysis process where the application of electricity facilitates the current travel in between anode and cathode. The mechanism of the ion movement is similar to the electrolysis process. Electrochemical machining (ECM) is a type of advanced machining process which employs electricity to perform the machining process on the workpiece. It is also known as a reverse electroplating process where metal removal is achieved instead of metal deposition on the metal surface. There are various parameters that affect the metal removal process in the ECM process, such as electrolyte, power supply, workpiece material, and tool material. The electrolyte is one of the key factors impacting the machining rate, surface finish, and reliability of the produced parts. In this project, a brief study is carried out regarding the electrochemical process and the electrolytes where the properties, functions, merits, and demerits are evaluated. The impact of the various electrolytes and their suitability for machining of various metals is also discussed. The findings of the effect produced by using the mixture of the electrolyte in the electrochemical machining process are discussed in this project. The effects of the complexing agents on the electrolyte and the electrochemical process as a whole are also reviewed.


2020 ◽  
Vol 846 ◽  
pp. 99-104
Author(s):  
Gandjar Kiswanto ◽  
Maulana Azmi ◽  
Adrian Mandala ◽  
Dede Lia Zariatin ◽  
Tae Jo Ko

The development of micro-products in industry, like aviation, medical equipment, electronics, etc, has been increasing lately. The need for scaling down of product has been increasing to make the product simpler and complex. Micro-milling has capabilities in producing complex parts. In this study, mapping and comparing the result of the machining process of Inconel 718 and Aluminum Alloy 1100 was employed. In this experiment, Inconel 718 was used as workpiece material and the result of Aluminum Alloy taken from recent studies. Then, A cutting tool with a diameter 1 mm carbide coating TiAlN was used in this experiment. The machining process was performed with three varieties of spindle speed and feed rate with a constant depth of cut. After the machining is done, the mapping of the result surface roughness of Inconel 718 and AA1100 performed. It was found that Inconel 718 has poor machinability compared with AA 1100. Inconel 718 also has a high manufacturing cost compared to AA 1100 because the cutting tool was easy to wear.


Sign in / Sign up

Export Citation Format

Share Document