Study on the Orthogonal Cutting Process of Al7050T7451 with Uncoated and Coated Tools

2008 ◽  
Vol 392-394 ◽  
pp. 990-995 ◽  
Author(s):  
Hui Yue Dong ◽  
Pu Jin Huang ◽  
Y.B. Bi

Tool wear during high speed machining process plays an important role in machining cost and efficiency. The purpose of this study is to examine the impact of tribological properties of coatings on cutting performance. Finite element methods (FEM) were used to model the effect of coated and uncoated cutting tools (K10) on the machinability of the aluminum alloy 7050T7451. Uncoated, Single coated, such as TiC, TiN and Al2O3 and multi-coated tool were studied. All finite element models were assumed to be plane strain. To achieve constitutive model of Al7050T7451 under conditions of machining that high strain rate, high strain and high temperature occur, high speed impact experiment and material drawing experiment were done. Comparison of FEM results shows that the highest temperatures in tools, the temperature change rates of different tools from surface to its bulk material, and the temperatures in chips are changed greatly. It also shows that the cutting temperature of coated tool is lower than uncoated tools, but cutting forces change very little. All these results show that coatings can be used to reduce adhesion between a tool and a workpiece material. The wear resistance of coated tool can be improved effectively and tool life is increased correspondingly.

2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2011 ◽  
Vol 308-310 ◽  
pp. 1465-1470
Author(s):  
Guo Chen Du ◽  
Ying Chen ◽  
Jin Feng Zhang ◽  
Zhi Zhen Wei

The results reported in this paper pertain to the simulation of high speed hard turning when using the finite element method. In recent years high speed hard turning has emerged as a very advantageous machining process for cutting hardened steels. Among the advantages of this modern turning operation are final product quality, reduced machining time, lower cost and environmentally friendly characteristics. For the finite element modelling a commercial programme, namely the Third Wave Systems AdvantEdge, was used. This programme is specially designed for simulating cutting operations, offering to the user many designing and analysis tools. In the present analysis orthogonal cutting models are proposed, taking several processing parameters into account; the models are validated with experimental results from the relevant literature and discussed. Additionally, oblique cutting models of high speed hard turning are constructed and discussed. From the reported results useful conclusions may be drawn and it can be stated that the proposed models can be used for industrial application.


2012 ◽  
Vol 500 ◽  
pp. 574-579 ◽  
Author(s):  
Xiao Jin Xu ◽  
Li Qiang Ding ◽  
Xue Ping Zhang

nconel718 is particle reinforced metal matrix composites widely applied in important fields. To evaluate the impact of particles on the machined subsurface in Inconel718 during high-speed machining operation, a multi-scale orthogonal cutting finite element (FE) model is established. A cohesive element technique is adopted to predict particle crack initiation process. The multi-scale FE model is validated with experimental data in terms of cutting forces and chip morphology. The simulation reveals that particle has a great influence on surface roughness and the feed force when particles are located in the sub-surface within the depths of 30μm, and the cutting process has less effect on the particle crack initiation when the particles in the depths of more than 40μm or deeper. The interaction effects generated from particle sizes in the same depth are investigated on the cutting process and particle crack initiation.


2009 ◽  
Vol 407-408 ◽  
pp. 444-447
Author(s):  
Hui Yue Dong ◽  
Hui Xue ◽  
Pu Jin Huang

Based on large deformation theory and virtual work principle, a coupled three-dimensional (3D) thermo-elastic-plastic finite element model (FEM) was constructed to simulate the high speed cutting process of Al7050-T7451. The mechanical properties of workpiece material under conditions of high temperature and high strain rate were defined in the model. A shear friction model was involved at the interfaces of tool-chip, tool-workpiece. Based on the model, different 3D machining FEM with different inclination angles were established, and distributions of stress, strain and temperature were achieved. Further more, the effects of inclination angle on the chip curling direction, chip flow angle, cutting force and cutting temperature were studied.


2010 ◽  
Vol 29-32 ◽  
pp. 1815-1819 ◽  
Author(s):  
Gang Tao Xu ◽  
Yu Sheng Li

A thermo-elastic-plastic model using explicit finite element code ABAQUS 6.8 was developed to investigate the effect of tool-chip friction in orthogonal cutting AISI4340. A.L.E finite element model was presented and the Johnson-Cook plastic model was used to model the workpiece material which is suitable for modeling cases with high strain, strain rate, strain hardening, and non-linear properties. In this paper, three different friction coefficient values of 0.2, 0.3, 0.4 were considered to study the effect on Cutting temperature, cutting forces and cutting stress. The results told a clear understanding of the effect of friction coefficient in orthogonal metal cutting, and larger friction coefficient induced higher cutting temperature, bigger cutting forces and larger cutting stress.


2013 ◽  
Vol 554-557 ◽  
pp. 2021-2028
Author(s):  
Yannick Senecaut ◽  
Michel Watremez ◽  
Damien Meresse ◽  
Laurent Dubar

High-speed machining is submitted to economical and ecological constraints. Optimization of cutting processes must increase productivity, reduce tool wear and control residual stresses in the workpiece. Developments of numerical approaches to simulate accurately high-speed machining process are therefore necessary since in situ optimization is long and costly. To get this purpose, rheological behaviour of both antagonists and representative friction models at tool-chip interface has to be studied as encountered during high-speed machining process. The study is led with AISI 1045 steel and an uncoated carbide tool. An experimental device has been first designed to simulate the friction behaviour at the tool-chip interface only in the zone near the cutting edge. Several tests are then performed to provide experimental data and these data are used to define the friction coefficient versus to the contact pressure, the sliding velocity and the interfacial temperature by a new formulation frictional law given by Brocail et al (2010). A two-dimensional finite element model of orthogonal cutting is developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting is then validated by comparing these process variables to experimental and numerical results obtained by Filice et al. (2006). This model makes possible qualitative analysis of input parameters related to cutting process and frictional models. A sensitivity analysis has been performed on the main input parameters (coefficients of the Johnson-Cook law, contact and thermal parameters) with the finite element model. The interfacial law determined by Brocail et al (2010) is implemented on this finite element model of machining and leads to improve numerical approaches of machining. Nevertheless, even if this law enables to reduce results between experimental and numerical approaches, some differences are still substantial. The advanced friction law must be complemented for higher sliding velocities and this work using a new specific experimental device will be presented in the second part of this paper.


2006 ◽  
Vol 532-533 ◽  
pp. 749-752 ◽  
Author(s):  
Jing Kui Ruan ◽  
Ying Lin Ke ◽  
Hui Yue Dong ◽  
Yong Yang

A finite element model (FEM) of high-speed cutting was built to study the mechanism of high-speed machining of alloy cast iron used widely in auto panel dies. The mechanics properties of workpiece material were obtained in the conditions of high strain-rate, high temperature and high strain through high-speed impact compress experiments. Several key technologies are studied such as friction and chip-tool heat conduction. The cutting temperature, stress distribution, and the chip formation process in the process of high-speed cutting alloy cast iron were analyzed based on the finite element model, which was validated through cutting force experiments. It shows that the FEM can simulate the high-speed cutting process of alloy cast iron materials.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


Author(s):  
Xiaoliang Jin

The contact between the tool flank wear land and wavy surface of workpiece causes energy dissipation which influences the tool vibration and chatter stability during a dynamic machining process. The process damping coefficient is affected by cutting conditions and constitutive property of workpiece material. This paper presents a finite element model of dynamic orthogonal cutting process with tool round edge and flank wear land. The process damping coefficient is identified based on the energy dissipation principle. The simulated results are experimentally validated.


Sign in / Sign up

Export Citation Format

Share Document