Stability of Ring-Stiffened Tubular Members Under External Pressure

1995 ◽  
Vol 117 (2) ◽  
pp. 150-155 ◽  
Author(s):  
S. A. Karamanos ◽  
J. L. Tassoulas

This paper presents results of a rigorous nonlinear finite element technique for the stability analysis of ring-stiffened steel tubes under external pressure. Large deformation, plasticity, as well as residual stresses and imperfections, are taken into account. Both internal and external stiffeners are simulated. A study of various parameters which affect pressure capacity is summarized, along with a comparison with available experimental data.

2012 ◽  
Vol 468-471 ◽  
pp. 1675-1680 ◽  
Author(s):  
Xiao Jing Wang ◽  
Zhi Min Wang ◽  
Nian Wang

Corrugated tubes in a heat exchanger are analyzed by using the FEA methods. And the formula how to compute single wave’s rigidity is obtained. Besides, methods of analyzing the stability of corrugated tubes under internal compressive pressure and external pressure are proposed which include characteristic value analysis and non-linear stability analysis, thus providing theory basis for the stability research of heat exchangers.


2012 ◽  
Vol 193-194 ◽  
pp. 864-867
Author(s):  
Wen Feng Du ◽  
Zhi Fei Sun

The design and analysis of the large span steel latticed shell structure in site of Yuyao TianLuoshan is introduced, and some key problems are dwelled on in this paper. By the geometrical nonlinear finite element method, the nonlinear stability analysis is carried out. The buckling modal and the whole course of instability are shown by two analysis method, the eigen-buckling analysis and the geometrical nonlinear finite element method. The influence of spring support to the stability of the structure is analyzed. It is shown that the structure has good wind-resisting capacity, which is fit to the circumstance near sea with lots of typhoon. Large compressive membrane stresses arise in the structure under the condition of temperature rise, leading to a significant reduction in the stability load-carrying capacity of the structure.


1977 ◽  
Vol 14 (4) ◽  
pp. 524-530 ◽  
Author(s):  
C. D. Thompson ◽  
J. J. Emery

Conventional stability analyses of a 47 ft (14.3 m) high embankment constructed of clayey silt fill indicated a satisfactory design with 2:1 slopes. However, cracking of the fill and movements of the embankment occurred when its height reached 32 ft (9.8 m). Investigation revealed that, in general terms, the geotechnical profile employed for the stability analysis was satisfactory. There was a localized layer of firm clayey soil at the interface between the fill and natural soil, which coincided with the observed cracks and the zone of high pore pressure.Construction scheduling was critical, and an initial wedge analysis showed that a 17 ft (5.2 m) high berm would ensure adequate safety during completion of the fill. A detailed investigation followed to determine the actual deformation mechanism responsible for the cracking. This included plane strain finite element runs using estimated moduli values. It was concluded that the cracking was caused by ‘spreading’ of plastic material at or near the base of the embankment. This case history illustrates that localized layers of weaker soil can be critical even when construction has been carefully controlled.


Author(s):  
K. Ramesh ◽  
R. G. Kirk

Abstract A PC-based program has been developed which is capable of performing stability analysis and response calculations of rotor-bearing systems. The paper discusses the modeling of rotors supported on active magnetic bearings (AMB) and highlights the advantages in the modeling using the finite element method, over the transfer matrix method. An 8-stage centrifugal compressor supported on AMB was chosen for the case study. The results for the stability analysis, obtained using the finite element program was compared with those obtained by the well established transfer matrix codes. The results of unbalance response, including the effects of sensor non collocation are presented and this demonstrates how an AMB supported rotor can experience a synchronous instability for selected sensor locations and balance distributions.


Author(s):  
Mohamed F. El-Amin ◽  
Jisheng Kou ◽  
Shuyu Sun

In this work, we introduce a theoretical foundation of the stability analysis of the mixed finite element solution to the problem of shale-gas transport in fractured porous media with geomechanical effects. The differential system was solved numerically by the Mixed Finite Element Method (MFEM). The results include seven lemmas and a theorem with rigorous mathematical proofs. The stability analysis presents the boundedness condition of the MFE solution.


2011 ◽  
Vol 110-116 ◽  
pp. 3184-3190
Author(s):  
Necdet Bildik ◽  
Duygu Dönmez Demir

This paper deals with the solutions of lateral heat loss equation by using collocation method with cubic B-splines finite elements. The stability analysis of this method is investigated by considering Fourier stability method. The comparison of the numerical solutions obtained by using this method with the analytic solutions is given by the tables and the figure.


1988 ◽  
Vol 61 (5) ◽  
pp. 879-891 ◽  
Author(s):  
Robert H. Finney ◽  
Alok Kumar

Abstract The determination of the material coefficients for Ogden, Mooney-Rivlin, Peng, and Peng-Landel material models using simple ASTM D 412 tensile data is shown to be a manageable task. The application of the various material models are shown to be subject to the type and level of deformation expected, with Ogden showing the best correlation with experimental data over a large strain range for the three types of strain investigated. At low strains, all of the models showed reasonable correlation.


1980 ◽  
Vol 102 (4) ◽  
pp. 441-445 ◽  
Author(s):  
Kaichiro Mishima ◽  
Mamoru Ishii

A criterion for the onset of a slug flow in a horizontal duct is derived theoretically. A potential flow analysis is carried out by considering waves of finite amplitude. The stability criterion is obtained by introducing the wave deformation limit and the “most dangerous wave” concept in the stability analysis. The present theoretical criterion for slug formation shows very good agreement with a large number of experimental data and with some empirical correlations.


2011 ◽  
Vol 11 (04) ◽  
pp. 755-774 ◽  
Author(s):  
NICOLA IMPOLLONIA ◽  
GIUSEPPE RICCIARDI ◽  
FERNANDO SAITTA

In classic cable theory, vibrations are usually analyzed by writing the equations of motion in the neighborhood of the initial equilibrium configuration. Furthermore, a fundamental difference exists between out-of-plane motions, which basically corresponds to the linear behavior of a taut string and in-plane motion, where self-weight determines a sagged initial profile. This work makes use of a continuous approach to establish the initial shape of the cable when it is subjected to wind or fluid flow arbitrarily directed and employed a novel nonlinear finite element technique in order to investigate the dynamics present around the initial equilibrium shape of the cable. Stochastic solutions in the frequency domain are derived for a wind-exposed cable after linearization of the problem. By applying the proper orthogonal decomposition (POD) technique with the aim of reducing computational effort, an approach to simulate modal wind forces is proposed and applied to the nonlinear equations of motion.


Sign in / Sign up

Export Citation Format

Share Document